Rock Mechanics and Rock Engineering, Год журнала: 2024, Номер 57(8), С. 6227 - 6258
Опубликована: Апрель 1, 2024
Язык: Английский
Rock Mechanics and Rock Engineering, Год журнала: 2024, Номер 57(8), С. 6227 - 6258
Опубликована: Апрель 1, 2024
Язык: Английский
Ceramics International, Год журнала: 2022, Номер 48(17), С. 24234 - 24259
Опубликована: Июнь 13, 2022
Язык: Английский
Процитировано
197Structures, Год журнала: 2022, Номер 46, С. 1243 - 1267
Опубликована: Ноя. 10, 2022
Язык: Английский
Процитировано
189Construction and Building Materials, Год журнала: 2022, Номер 349, С. 128737 - 128737
Опубликована: Авг. 18, 2022
Язык: Английский
Процитировано
98Ultrasonics, Год журнала: 2024, Номер 141, С. 107347 - 107347
Опубликована: Май 20, 2024
Язык: Английский
Процитировано
56Structures, Год журнала: 2023, Номер 48, С. 1209 - 1229
Опубликована: Янв. 11, 2023
Язык: Английский
Процитировано
48Case Studies in Construction Materials, Год журнала: 2024, Номер 20, С. e02901 - e02901
Опубликована: Янв. 19, 2024
The construction sector is a major contributor to global greenhouse gas emissions. Using recycled and waste materials in concrete practical solution address environmental challenges. Currently, agricultural widely used as substitute for cement the production of eco-friendly concrete. However, traditional methods assessing strength such are both expensive time-consuming. Therefore, this study uses machine learning techniques develop prediction models compressive (CS) rice husk ash (RHA) ML present include random forest (RF), light gradient boosting (LightGBM), ridge regression, extreme (XGBoost). A total 348 values CS were collected from experimental studies, five characteristics RHA taken input variables. For performance assessment models, multiple statistical metrics used. During training phase, correlation coefficients (R) obtained RF, XGBoost, LightGBM 0.943, 0.981, 0.985, 0.996, respectively. In testing set, these demonstrated even higher performance, with 0.971, 0.993, 0.992, 0.998 LightGBM, analysis revealed that model outperformed other whereas regression exhibited comparatively lower accuracy. SHapley Additive exPlanation (SHAP) method was employed interpretability developed model. SHAP water-to-cement controlling parameter estimating conclusion, provides valuable guidance builders researchers estimate it suggested more variables be incorporated hybrid utilized further enhance reliability precision models.
Язык: Английский
Процитировано
38Heliyon, Год журнала: 2024, Номер 10(4), С. e25997 - e25997
Опубликована: Фев. 1, 2024
Tire rubber waste is globally accumulated every year. Therefore, a solution to this problem should be found since, if landfilled, it not biodegradable and causes environmental issues. One of the most effective ways recycling those wastes or using them as replacement for normal aggregate in concrete mixture, which has high impact resistance toughness; thus, will good choice. In study, 135 data were collected from previous literature develop model prediction rubberized compressive strength; database comprised different mixture proportions, maximum size (1-40 mm), percentage (0-100%) replacing natural fine coarse aggregates among input parameters addition cement content (380-500 kg/m
Язык: Английский
Процитировано
24Geomechanics and Geoengineering, Год журнала: 2024, Номер 19(6), С. 975 - 990
Опубликована: Апрель 17, 2024
Machine learning (ML) has made significant advancements in predictive modelling across many engineering sectors. However, predicting the bearing capacity of pre-bored grouted planted nodular (PGPN) piles remains a relatively unexplored area due to complexity load-bearing mechanism, pile-soil interactions, and multiple variables involved. The study utilises state-of-the-art ML techniques such as extreme gradient boosting (XGBoost), random forest (RF), machines (GBMs), deep learning-based simulation models. dataset fed into model comprises 81 case histories static pile load tests conducted various regions Vietnam. data was validated using descriptive statistics, sensitivity analysis, correlation matrix displays, SHAP plot regression curves, with performance through k-fold cross-validation. Among all models tested, XGBoost (R2 = 0.91, RMSE 0.09) RF 0.82, performed best, while neural network also yielded satisfactory results. GBM found not be robust for this analysis. visually analysed Violin comparisons Taylor diagrams. outcome facilitates safe economical designs eco-friendly pile.
Язык: Английский
Процитировано
19Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 7(4), С. 3301 - 3325
Опубликована: Март 26, 2024
Язык: Английский
Процитировано
17Transportation Infrastructure Geotechnology, Год журнала: 2025, Номер 12(1)
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
3