Short-term water quality prediction of reclaimed water plant effluent and key measurement sections based on a surrogate prediction model DOI
Jing Feng, Yu Tian, Peng Li

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 380, С. 125147 - 125147

Опубликована: Март 30, 2025

Язык: Английский

Indices and models of surface water quality assessment: Review and perspectives DOI
Tao Yan, Shui‐Long Shen, Annan Zhou

и другие.

Environmental Pollution, Год журнала: 2022, Номер 308, С. 119611 - 119611

Опубликована: Июнь 15, 2022

Язык: Английский

Процитировано

111

Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems DOI

Hyung Il Kim,

Dongkyun Kim,

Mehran Mahdian

и другие.

Environmental Pollution, Год журнала: 2024, Номер 355, С. 124242 - 124242

Опубликована: Май 27, 2024

Язык: Английский

Процитировано

31

Applications of deep learning in water quality management: A state-of-the-art review DOI

Kok Poh Wai,

Min Yan Chia,

Chai Hoon Koo

и другие.

Journal of Hydrology, Год журнала: 2022, Номер 613, С. 128332 - 128332

Опубликована: Авг. 23, 2022

Язык: Английский

Процитировано

67

A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters DOI
Xiaotong Zhu, Hongwei Guo, Jinhui Jeanne Huang‬‬‬‬

и другие.

Journal of Hydrology, Год журнала: 2023, Номер 619, С. 129207 - 129207

Опубликована: Фев. 4, 2023

Язык: Английский

Процитировано

36

Fuzzy Machine Learning: A Comprehensive Framework and Systematic Review DOI Creative Commons
Jie Lü, Guangzhi Ma, Guangquan Zhang

и другие.

IEEE Transactions on Fuzzy Systems, Год журнала: 2024, Номер 32(7), С. 3861 - 3878

Опубликована: Июль 1, 2024

Machine learning draws its power from various disciplines, including computer science, cognitive and statistics. Although machine has achieved great advancements in both theory practice, methods have some limitations when dealing with complex situations highly uncertain environments. Insufficient data, imprecise observations, ambiguous information/relationships can all confound traditional systems. To address these problems, researchers integrate leaning different aspects, fuzzy techniques sets, systems, logic, measures, relations, so on. This paper presents a systematic review of learning, theory, approach to application, the overall objective providing an overview recent achievements field learning. this end, concepts frameworks discussed are divided into five categories: (a) classical learning; (b) transfer (c) data stream (d) reinforcement (e) recommender The literature presented should provide solid understanding current progress research applications.

Язык: Английский

Процитировано

13

A framework based on multivariate distribution-based virtual sample generation and DNN for predicting water quality with small data DOI
Ali El Bilali, Houda Lamane, Abdeslam Taleb

и другие.

Journal of Cleaner Production, Год журнала: 2022, Номер 368, С. 133227 - 133227

Опубликована: Июль 21, 2022

Язык: Английский

Процитировано

33

Artificial ecosystem optimization with Deep Learning Enabled Water Quality Prediction and Classification model DOI
Nazrul Islam, Kashif Irshad

Chemosphere, Год журнала: 2022, Номер 309, С. 136615 - 136615

Опубликована: Сен. 29, 2022

Язык: Английский

Процитировано

33

A novel interval decomposition correlation particle swarm optimization-extreme learning machine model for short-term and long-term water quality prediction DOI

Songhua Huan

Journal of Hydrology, Год журнала: 2023, Номер 625, С. 130034 - 130034

Опубликована: Авг. 11, 2023

Язык: Английский

Процитировано

21

A unified deep learning framework for water quality prediction based on time-frequency feature extraction and data feature enhancement DOI
Rui Xu,

Shengri Hu,

Hang Wan

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 351, С. 119894 - 119894

Опубликована: Дек. 27, 2023

Язык: Английский

Процитировано

18

Deep learning in water protection of resources, environment, and ecology: achievement and challenges DOI
Xiaohua Fu, Jie Jiang,

Xie Wu

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(10), С. 14503 - 14536

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

6