Feature multi-level attention spatio-temporal graph residual network: A novel approach to ammonia nitrogen concentration prediction in water bodies by integrating external influences and spatio-temporal correlations DOI Open Access
Hongqing Wang, Lifu Zhang,

Hongying Zhao

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 906, С. 167591 - 167591

Опубликована: Окт. 5, 2023

Язык: Английский

An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation DOI
Ali El Bilali,

Taleb Abdeslam,

Ayoub Nafii

и другие.

Journal of Environmental Management, Год журнала: 2022, Номер 327, С. 116890 - 116890

Опубликована: Ноя. 29, 2022

Язык: Английский

Процитировано

104

Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches DOI
Ali Aldrees, Majid Khan, Abubakr Taha Bakheit Taha

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 58, С. 104789 - 104789

Опубликована: Янв. 17, 2024

Язык: Английский

Процитировано

65

Predicting lake water quality index with sensitivity-uncertainty analysis using deep learning algorithms DOI
Swapan Talukdar,

Shahfahad,

Shakeel Ahmed

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 406, С. 136885 - 136885

Опубликована: Апрель 3, 2023

Язык: Английский

Процитировано

58

Water Quality Inversion of a Typical Rural Small River in Southeastern China Based on UAV Multispectral Imagery: A Comparison of Multiple Machine Learning Algorithms DOI Open Access
Yujie Chen,

Ke Yao,

Beibei Zhu

и другие.

Water, Год журнала: 2024, Номер 16(4), С. 553 - 553

Опубликована: Фев. 11, 2024

Remote sensing technology applications for water quality inversion in large rivers are common. However, their application to medium/small-sized bodies within rural areas is limited due the low spatial resolution of remote images. In this work, a typical small river was selected, and high-resolution unmanned aerial vehicle (UAV) multispectral images ground monitoring data were obtained. Then, comparative analysis three univariate regression models nine machine learning (Ridge Regression (RR), Support Vector (SVR), Grid Search (GS-SVR), Random Forest (RF), (GS-RF), eXtreme Gradient Boosting (XGBoost), Deep Neural Networks (DNN), Convolutional (CNN), Catboost (CBR)) accuracy prediction turbidity (TUB), total nitrogen (TN), phosphorus (TP) performed. TUB can be achieved by simple statistical models. The CBR model exhibited best performance index inversions on test set evaluation metrics: R2 (0.90~0.92), RMSE (7.57 × 10−3~1.59 mg/L), MAE (0.01~1.30 RPD (3.21~3.56), NSE (0.84~0.92). pollution study area closely related its land-use pattern, excessive irrational fertilizer application, distribution pollutant outlets.

Язык: Английский

Процитировано

10

Surface water quality prediction in the lower Thoubal river watershed, India: A hyper-tuned machine learning approach and DNN-based sensitivity analysis DOI
Md Hibjur Rahaman, Haroon Sajjad,

Shabina Hussain

и другие.

Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(3), С. 112915 - 112915

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

9

Machine learning-based prediction of biological oxygen demand and unit electricity consumption in different-scale wastewater treatment plants DOI
Gang Ye, Jinquan Wan,

Zhicheng Deng

и другие.

Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(2), С. 111849 - 111849

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

8

Geochemical and isotopic studies of the Douda-Damerjogue aquifer (Republic of Djibouti): Origin of high nitrate and fluoride, spatial distribution, associated health risk assessment and prediction of water quality using machine learning DOI
M.O. Awaleh, Tiziano Boschetti,

Christelle Marlin

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 967, С. 178789 - 178789

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Digital mapping of soil organic carbon density using newly developed bare soil spectral indices and deep neural network DOI Creative Commons
Qian Liu, He Li,

Long Guo

и другие.

CATENA, Год журнала: 2022, Номер 219, С. 106603 - 106603

Опубликована: Сен. 7, 2022

Язык: Английский

Процитировано

34

Prediction of groundwater level variations using deep learning methods and GMS numerical model DOI
Siamak Amiri, Ahmad Rajabi, Saeid Shabanlou

и другие.

Earth Science Informatics, Год журнала: 2023, Номер 16(4), С. 3227 - 3241

Опубликована: Авг. 31, 2023

Язык: Английский

Процитировано

21

Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, South China DOI
Di Tian, Xinfeng Zhao, Lei Gao

и другие.

Environmental Pollution, Год журнала: 2023, Номер 342, С. 123104 - 123104

Опубликована: Дек. 7, 2023

Язык: Английский

Процитировано

17