Mechanisms and machine science, Год журнала: 2024, Номер unknown, С. 415 - 426
Опубликована: Янв. 1, 2024
Язык: Английский
Mechanisms and machine science, Год журнала: 2024, Номер unknown, С. 415 - 426
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Power Sources, Год журнала: 2025, Номер 631, С. 236187 - 236187
Опубликована: Янв. 17, 2025
Язык: Английский
Процитировано
2Energy, Год журнала: 2025, Номер unknown, С. 135163 - 135163
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Journal of Energy Storage, Год журнала: 2024, Номер 95, С. 112442 - 112442
Опубликована: Июнь 15, 2024
Язык: Английский
Процитировано
11Journal of Energy Storage, Год журнала: 2024, Номер 98, С. 113074 - 113074
Опубликована: Июль 28, 2024
Язык: Английский
Процитировано
10Energy, Год журнала: 2025, Номер unknown, С. 134569 - 134569
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Energies, Год журнала: 2025, Номер 18(3), С. 746 - 746
Опубликована: Фев. 6, 2025
The sustainable reuse of batteries after their first life in electric vehicles requires accurate state-of-health (SoH) estimation to ensure safe and efficient repurposing. This study applies the systematic ProKnow-C methodology analyze state art SoH using machine learning (ML). A bibliographic portfolio 534 papers (from 2018 onward) was constructed, revealing key research trends. Public datasets are increasingly favored, appearing 60% studies reaching 76% 2023. Among 12 identified sources covering 20 from different lithium battery technologies, NASA’s Prognostics Center Excellence contributes 51% them. Deep (DL) dominates field, comprising 57.5% implementations, with LSTM networks used 22% cases. also explores hybrid models emerging role transfer (TL) improving prediction accuracy. highlights potential applications predictions energy informatics smart systems, such as grids Internet-of-Things (IoT) devices. By integrating estimates into real-time monitoring systems wireless sensor networks, it is possible enhance efficiency, optimize management, promote practices. These reinforce relevance machine-learning-based resilience sustainability systems. Finally, an assessment implemented algorithms performances provides a structured overview identifying opportunities for future advancements.
Язык: Английский
Процитировано
1Energy and AI, Год журнала: 2024, Номер 17, С. 100382 - 100382
Опубликована: Июнь 7, 2024
Data-driven models for battery state estimation require extensive experimental training data, which may not be available or suitable specific tasks like open-circuit voltage (OCV) reconstruction and subsequent of health (SOH) estimation. This study addresses this issue by developing a transfer-learning-based OCV model using temporal convolutional long short-term memory (TCN-LSTM) network trained on synthetic data from an automotive nickel cobalt aluminium oxide (NCA) cell generated through mechanistic approach. The consists curves at constant temperature, C-rates between C/30 to 1C, SOH-range 70 % 100 %. is refined via Bayesian optimization then applied four use cases with reduced manganese (NMC) higher cases. TL models' performances are compared solely focusing different windows. results demonstrate that the mean absolute error (MAE) within average electric vehicle (BEV) home charging window (30 85 charge (SOC)) less than 22 mV first three across all C-rates. SOH estimated reconstructed exhibits percentage (MAPE) below 2.2 these further investigates impact source domain incorporating two additional datasets, lithium iron phosphate (LFP) entirely artificial, non-existing, cell, showing shifting scaling gradient changes in curve suffice transfer knowledge, even chemistries. A key limitation respect extrapolation capability identified evidenced our fourth case, where absence such comprehensive hindered process.
Язык: Английский
Процитировано
8Energy, Год журнала: 2024, Номер unknown, С. 134293 - 134293
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
6Journal of Energy Storage, Год журнала: 2024, Номер 96, С. 112688 - 112688
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
5Computers, Год журнала: 2024, Номер 13(3), С. 64 - 64
Опубликована: Фев. 29, 2024
Over the past decade, Unmanned Aerial Vehicles (UAVs) have begun to be increasingly used due their untapped potential. Li-ion batteries are most power electrically operated UAVs for advantages, such as high energy density and number of operating cycles. Therefore, it is necessary estimate Remaining Useful Life (RUL) prediction batteries’ capacity prevent UAVs’ loss autonomy, which can cause accidents or material losses. In this paper, authors propose a method RUL using data-driven approach. To maximize performance process, three machine learning models, Support Vector Machine Regression (SVMR), Multiple Linear (MLR), Random Forest (RF), were compared batteries. The implemented within Predictive Maintenance (PdM) systems.
Язык: Английский
Процитировано
4