Optimizing underground hydrogen storage performance through multi-well strategies in depleted gas reservoirs
International Journal of Hydrogen Energy,
Год журнала:
2025,
Номер
106, С. 672 - 685
Опубликована: Фев. 5, 2025
Язык: Английский
Techno-economic analysis and site screening for underground hydrogen storage in Intermountain-West region, United States
International Journal of Hydrogen Energy,
Год журнала:
2025,
Номер
109, С. 275 - 286
Опубликована: Фев. 11, 2025
Язык: Английский
Molecular simulation of hydrogen adsorption in subsurface systems with implications for underground storage
International Journal of Hydrogen Energy,
Год журнала:
2025,
Номер
114, С. 71 - 80
Опубликована: Март 1, 2025
Язык: Английский
Deep Learning for Subsurface Flow: A Comparative Study of U‐Net, Fourier Neural Operators, and Transformers in Underground Hydrogen Storage
Journal of Geophysical Research Machine Learning and Computation,
Год журнала:
2025,
Номер
2(1)
Опубликована: Март 1, 2025
Abstract
Subsurface
flow
research
is
essential
for
the
sustainable
management
of
natural
resources
and
environment.
Deep
learning
(DL)
has
significantly
advanced
this
field
by
developing
efficient
accurate
surrogate
models
to
replace
computationally
expensive
physics‐based
simulations.
These
are
commonly
used
predict
spatiotemporal
evolution
state
variables,
such
as
gas
saturation
reservoir
pressure,
in
heterogeneous
geological
formations.
Despite
various
DL
applied
task,
there
a
lack
studies
systematically
comparing
their
performance.
This
absence
comparative
analysis
leads
somewhat
arbitrary
model
selection
subsurface
research,
resulting
suboptimal
performance
potentially
inaccurate
predictions.
To
bridge
gap,
we
conduct
systematic
comparison
study
three
popular
architectures—U‐Net,
Fourier
Neural
Operators
(FNO),
Segmentation
Transformer
(SETR)—in
modeling
underground
hydrogen
storage
(UHS).
We
focus
on
UHS
due
its
promise
enhancing
clean
energy
resilience
cyclic
operational
conditions
that
represent
common
scenarios
applications.
evaluate
based
accuracy,
training
cost,
inference
speed.
The
shows
U‐Net
achieves
highest
followed
SETR
FNO.
lower
FNO
offers
competitive
accuracy
with
least
memory
usage,
demonstrating
potential
transformers
flow.
Our
results
provide
guidance
selecting
wide
range
problems.
Язык: Английский
Molecular Insights into Geochemical Reactions of Iron-Bearing Minerals: Implications for Hydrogen Geo-Storage
ACS Sustainable Chemistry & Engineering,
Год журнала:
2025,
Номер
unknown
Опубликована: Март 12, 2025
Язык: Английский
Analytical study of bioclogging effects in underground hydrogen storage
International Journal of Hydrogen Energy,
Год журнала:
2024,
Номер
94, С. 862 - 870
Опубликована: Ноя. 16, 2024
Язык: Английский
Numerical simulation of seasonal underground hydrogen storage: Role of the initial gas amount on the round-trip hydrogen recovery efficiency
International Journal of Hydrogen Energy,
Год журнала:
2024,
Номер
88, С. 289 - 312
Опубликована: Сен. 20, 2024
Язык: Английский
Temperature dependence of hydrogen diffusion in reservoir rocks: implications for hydrogen geologic storage
Energy Advances,
Год журнала:
2024,
Номер
3(8), С. 2051 - 2065
Опубликована: Янв. 1, 2024
This
study
presents
a
comprehensive
experimental
dataset
on
the
temperature-dependent
diffusion
of
hydrogen
(H
2
)
in
reservoir
rocks.
The
results
demonstrate
that
H
diffuses
through
rocks
up
to
100
times
faster
than
methane
(CH
4
).
Язык: Английский
Laboratory evaluation of cyclic underground hydrogen storage in the temblor sandstone of the San Joaquin Basin, California
Journal of Energy Storage,
Год журнала:
2025,
Номер
129, С. 117280 - 117280
Опубликована: Июнь 5, 2025
Язык: Английский
Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage
Energies,
Год журнала:
2024,
Номер
17(22), С. 5696 - 5696
Опубликована: Ноя. 14, 2024
Photovoltaic
(PV)
and
wind
energy
generation
result
in
low
greenhouse
gas
footprints
can
supply
electricity
to
the
grid
or
generate
hydrogen
for
various
applications,
including
seasonal
storage.
Designing
integrated
wind–PV–electrolyzer
underground
storage
(UHS)
projects
is
complex
due
interactions
between
components.
Additionally,
capacities
of
PV
relative
electrolyzer
capacity
fluctuating
prices
must
be
considered
project
design.
To
address
these
challenges,
process
modelling
was
applied
using
cost
components
parameters
from
a
Austria.
The
part
derived
an
Austrian
hydrocarbon
field
UHS.
results
highlight
impact
renewable
source
(RES)
sizing
capacity,
influence
different
wind-to-PV
ratios,
benefits
selling
hydrogen.
For
case
study,
levelized
(LCOH)
EUR
6.26/kg
RES-to-electrolyzer
ratio
0.88.
Oversizing
reduces
LCOH
2.61
€/kg
when
sales
revenues,
4.40/kg
excluding
them.
Introducing
annually
linked
RES
optimal
ratio.
dynamically
adjusted
response
market
developments.
UHS
provides
areas
with
mismatches
production
consumption.
main
are
compression,
conditioning,
wells,
cushion
gas.
project,
(LCHS)
0.80
€/kg,
facilities
contributing
0.33/kg,
wells
0.09/kg,
0.23/kg,
OPEX
0.16/kg.
Overall,
analysis
demonstrates
feasibility
RES–hydrogen
generation-seasonal
regions
like
Austria,
systems
that
conditions.
Язык: Английский