Atom Search Optimization: a comprehensive review of its variants, applications, and future directions DOI Creative Commons
M.A. El‐Shorbagy, Anas Bouaouda, Laith Abualigah

и другие.

PeerJ Computer Science, Год журнала: 2025, Номер 11, С. e2722 - e2722

Опубликована: Фев. 28, 2025

The Atom Search Optimization (ASO) algorithm is a recent advancement in metaheuristic optimization inspired by principles of molecular dynamics. It mathematically models and simulates the natural behavior atoms, with interactions governed forces derived from Lennard-Jones potential constraint based on bond-length potentials. Since its inception 2019, it has been successfully applied to various challenges across diverse fields technology science. Despite notable achievements rapidly growing body literature ASO domain, comprehensive study evaluating success implementations still lacking. To address this gap, article provides thorough review half decade advancements research, synthesizing wide range studies highlight key variants, their foundational principles, significant achievements. examines applications, including single- multi-objective problems, introduces well-structured taxonomy guide future exploration ASO-related research. reviewed reveals that several variants algorithm, modifications, hybridizations, implementations, have developed tackle complex problems. Moreover, effectively domains, such as engineering, healthcare medical Internet Things communication, clustering data mining, environmental modeling, security, engineering emerging most prevalent application area. By addressing common researchers face selecting appropriate algorithms for real-world valuable insights into practical applications offers guidance designing tailored specific

Язык: Английский

Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm DOI
Mojtaba Ghasemi, Mohsen Zare, Pavel Trojovský

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 295, С. 111850 - 111850

Опубликована: Апрель 22, 2024

Язык: Английский

Процитировано

40

Flood algorithm (FLA): an efficient inspired meta-heuristic for engineering optimization DOI
Mojtaba Ghasemi, Keyvan Golalipour, Mohsen Zare

и другие.

The Journal of Supercomputing, Год журнала: 2024, Номер 80(15), С. 22913 - 23017

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

39

Love Evolution Algorithm: a stimulus–value–role theory-inspired evolutionary algorithm for global optimization DOI
Yuansheng Gao, Jiahui Zhang, Yulin Wang

и другие.

The Journal of Supercomputing, Год журнала: 2024, Номер 80(9), С. 12346 - 12407

Опубликована: Фев. 12, 2024

Язык: Английский

Процитировано

23

Dream Optimization Algorithm (DOA): A novel metaheuristic optimization algorithm inspired by human dreams and its applications to real-world engineering problems DOI

Yidong Lang,

Yuelin Gao

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2025, Номер 436, С. 117718 - 117718

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

6

ACEPSO: A multiple adaptive co-evolved particle swarm optimization for solving engineering problems DOI
Gang Hu,

Cheng Mao,

Guanglei Sheng

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 61, С. 102516 - 102516

Опубликована: Апрель 10, 2024

Язык: Английский

Процитировано

16

SDO: A novel sled dog-inspired optimizer for solving engineering problems DOI
Gang Hu,

Cheng Mao,

Essam H. Houssein

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102783 - 102783

Опубликована: Авг. 28, 2024

Процитировано

14

ASCAEO: accelerated sine cosine algorithm hybridized with equilibrium optimizer with application in image segmentation using multilevel thresholding DOI

Shivankur Thapliyal,

Narender Kumar

Evolving Systems, Год журнала: 2024, Номер 15(4), С. 1297 - 1358

Опубликована: Янв. 16, 2024

Язык: Английский

Процитировано

12

Neural population dynamics optimization algorithm: A novel brain-inspired meta-heuristic method DOI
Junzhong Ji, Tongxuan Wu, Cuicui Yang

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 300, С. 112194 - 112194

Опубликована: Июль 11, 2024

Язык: Английский

Процитировано

10

Improved snow geese algorithm for engineering applications and clustering optimization DOI Creative Commons
Haihong Bian, Can Li, Yuhan Liu

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Фев. 6, 2025

The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that easy fall into local optimal and premature convergence. In order further improve the performance of algorithm, this paper proposes an improved (ISGA) based on three strategies according real migration habits snow geese: (1) Lead goose rotation mechanism. (2) Honk-guiding (3) Outlier boundary strategy. Through above strategies, exploration development ability original comprehensively enhanced, convergence accuracy speed improved. paper, two standard test sets IEEE CEC2022 CEC2017 used verify excellent algorithm. practical application ISGA tested through 8 engineering problems, employed enhance effect clustering results show compared with comparison faster iteration can find better solutions, shows its great potential solving problems.

Язык: Английский

Процитировано

1

Dynamic path planning for mobile robots based on artificial potential field enhanced improved multiobjective snake optimization (APF‐IMOSO) DOI
Qilin Li, Qihua Ma, Xin Weng

и другие.

Journal of Field Robotics, Год журнала: 2024, Номер 41(6), С. 1843 - 1863

Опубликована: Апрель 29, 2024

Abstract With the widespread adoption of mobile robots, effective path planning has become increasingly critical. Although traditional search methods have been extensively utilized, meta‐heuristic algorithms gained popularity owing to their efficiency and problem‐specific heuristics. However, challenges remain in terms premature convergence lack solution diversity. To address these issues, this paper proposes a novel artificial potential field enhanced improved multiobjective snake optimization algorithm (APF‐IMOSO). This presents four key enhancements optimizer significantly improve its performance. Additionally, it introduces fitness functions focused on optimizing length, safety (evaluated via method), energy consumption, time efficiency. The results simulation experiment scenarios including static dynamic highlight APF‐IMOSO's advantages, delivering improvements 8.02%, 7.61%, 50.71%, 12.74% safety, efficiency, time‐savings, respectively, over original algorithm. Compared with other advanced meta‐heuristics, APF‐IMOSO also excels indexes. Real robot experiments show an average length error 1.19% across scenarios. reveal that can generate multiple viable collision‐free paths complex environments under various constraints, showcasing for use within realm navigation.

Язык: Английский

Процитировано

8