Energy, Год журнала: 2021, Номер 240, С. 122599 - 122599
Опубликована: Ноя. 19, 2021
Язык: Английский
Energy, Год журнала: 2021, Номер 240, С. 122599 - 122599
Опубликована: Ноя. 19, 2021
Язык: Английский
Transportation Geotechnics, Год журнала: 2021, Номер 32, С. 100703 - 100703
Опубликована: Дек. 13, 2021
Язык: Английский
Процитировано
67Journal of Energy Storage, Год журнала: 2022, Номер 54, С. 105230 - 105230
Опубликована: Июль 12, 2022
Язык: Английский
Процитировано
66Archives of Computational Methods in Engineering, Год журнала: 2021, Номер 29(2), С. 1229 - 1245
Опубликована: Июль 5, 2021
Язык: Английский
Процитировано
64Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2021, Номер 13(6), С. 1500 - 1512
Опубликована: Сен. 14, 2021
A novel and effective artificial neural network (ANN) optimized using differential evolution (DE) is first introduced to provide a robust reliable forecasting of jet grouted column diameters. The proposed computational method adopts the DE algorithm tackle difficulties in training performance networks optimize four quintessential hyper-parameters (i.e. epoch size, number neurons hidden layer, layers, regularization parameter) that govern efficacy. This approach further enhanced by stochastic gradient optimization allow 'expensive' computation efforts. ANN-DE trained prepared grouting dataset, then verified compared with prevalent machine learning tools, i.e. support vector (SVM). results show that, outperforms existing methods for predicting diameter columns since it well balances efficiency model performance. Specifically, achieved root mean square error (RMSE) values 0.90603 0.92813 testing phases, respectively. corresponding were 0.8905 0.9006 ANN, then, 0.87569 0.89968 SVM, paradigm bound be useful solving various geotechnical engineering problems regardless multi-dimension nonlinearity.
Язык: Английский
Процитировано
57Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2022, Номер 14(4), С. 1100 - 1114
Опубликована: Апрель 18, 2022
The influence of a deep excavation on existing shield tunnels nearby is vital issue in tunnelling engineering. Whereas, there lacks robust methods to predict excavation-induced tunnel displacements. In this study, an auto machine learning (AutoML)-based approach proposed precisely solve the issue. Seven input parameters are considered database covering two physical aspects, namely soil property, and spatial characteristics excavation. 10-fold cross-validation method employed overcome scarcity data, promote model's robustness. Six genetic algorithm (GA)-ML models established as well for comparison. results indicated that AutoML model comprehensive integrates efficiency Importance analysis reveals ratio average shear strength vertical effective stress Eur/σv′, depth H, width B most influential variables Finally, further validated by practical prediction good agreement with monitoring signifying our can be applied real projects.
Язык: Английский
Процитировано
53Mechanics of Advanced Materials and Structures, Год журнала: 2023, Номер 31(23), С. 5999 - 6014
Опубликована: Июнь 22, 2023
Concrete production contributes significantly to global greenhouse gas emissions, and its manufacture requires substantial natural resources. These concerns can be partly mitigated by recycling construction demolition waste as aggregates produce Recycled Aggregate (RAC). RAC has gained momentum due lower environmental impact, costs, increased sustainability. The aim of this study was advance the reasonable use recycled aggregate in concrete achieve optimal mixture ratio design. Four advanced machine learning algorithms, Support Vector Machine (SVR), Light Gradient Boosting (LGBM), Random Forest (RF), Multi-Layer Perceptron (MLP), were employed, novel optimization biogeography-based (BBO), Multi-Verse Optimizer (MVO) Gravitational Search Algorithm (GSA), integrated predict compressive strength RAC. Six potential influential factors for considered models. employed four evaluation metrics, Taylor diagrams Regression Error Characteristic plots compare model performance. result shows LGBM-based hybrid outperformed other methods, demonstrating high accuracy predicting strength. Shapley Additive Explanation (SHAP) results emphasize importance understanding interactions between various their effects on mechanical properties findings inform development more sustainable environmentally friendly building materials.
Язык: Английский
Процитировано
33Heliyon, Год журнала: 2023, Номер 9(3), С. e14465 - e14465
Опубликована: Март 1, 2023
A state-of-the-art review has been conducted in this work on soil constitutive modeling, which emphasized on: type, ground-water conditions, loading structural behavior, relation discipline, and dimensions. By extension also, the applications were reviewed bases of: single discipline dealing with mechanical properties modeling included slope stability problems, bearing capacity, settlement of foundations, earth pressure dynamics, structure interaction, thermal hydrological conditions; bi-discipline (coupled problems) solve problems related to thermomechanical (freeze/thaw conditions), smoothed particle hydrodynamics (SPH) hydromechanical (consolidation, collapse liquefaction) conditions soils rocks multi-discipline models complex thermo-hydromechanical (THM) rocks. This shown that (HM) models, belong or coupled are better suited for geotechnical applications, generally, while solving freeze/thaw piles these proven high performance flexibility.
Язык: Английский
Процитировано
29Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 421, С. 116819 - 116819
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
17International Journal of Geo-Engineering, Год журнала: 2024, Номер 15(1)
Опубликована: Июнь 18, 2024
Abstract
A
collection
of
feed
forward
neural
networks
(FNN)
for
estimating
the
limit
pressure
load
and
according
displacements
at
state
a
footing
settlement
is
presented.
The
training
procedure
through
supervised
learning
with
error
loss
function
mean
squared
norm.
input
dataset
originated
from
Monte
Carlo
simulations
variety
loadings
stochastic
uncertainty
material
clayey
soil
domain.
yield
Modified
Cam
Clay
model.
accuracy
FNN’s
in
terms
relative
no
more
than
$$10^{-5}$$
Язык: Английский
Процитировано
15Applied Clay Science, Год журнала: 2024, Номер 249, С. 107239 - 107239
Опубликована: Янв. 21, 2024
Язык: Английский
Процитировано
12