Environmental Earth Sciences, Год журнала: 2024, Номер 83(3)
Опубликована: Янв. 25, 2024
Язык: Английский
Environmental Earth Sciences, Год журнала: 2024, Номер 83(3)
Опубликована: Янв. 25, 2024
Язык: Английский
Engineering Geology, Год журнала: 2022, Номер 311, С. 106899 - 106899
Опубликована: Окт. 26, 2022
Язык: Английский
Процитировано
69Tunnelling and Underground Space Technology, Год журнала: 2022, Номер 131, С. 104830 - 104830
Опубликована: Ноя. 14, 2022
Язык: Английский
Процитировано
59Transportation Geotechnics, Год журнала: 2022, Номер 36, С. 100806 - 100806
Опубликована: Июль 8, 2022
Язык: Английский
Процитировано
42Advanced Engineering Informatics, Год журнала: 2023, Номер 57, С. 102032 - 102032
Опубликована: Июнь 8, 2023
Язык: Английский
Процитировано
35Geoderma, Год журнала: 2023, Номер 430, С. 116321 - 116321
Опубликована: Янв. 4, 2023
Soil salinization is a major environmental risk caused by natural or human activities especially in arid and semi-arid regions. Machine learning for rapidly monitoring large-scale spatial soil becomes possible. However, machine often needs large training samples obtaining extensive information field investigation laborious difficult. In practice, the sampling datasets are sparse non-normally distributed. The intricacy of features extracted from remote sensing images increases model complexity leads to degradation prediction performance. To solve this problem, an integrative framework proposed predict salt content (SSC) based on light gradient boosting (LGBM). model, we first introduce data augmentation method (Mixup) improve sample diversity alleviate overfitting sparsity samples. generalization robustness different heterogeneity salinization, Mixup-LGBM adaptively jointly optimized combining hyperparameters feature selection Bayesian optimization framework. Furthermore, interpretability improved using shapley additive explanations (SHAP) value combination confidence synthetic through visualization importance assessment. addition, cases simulated test Case I, raw sample-sparsity algorithm has higher accuracy than other unused models. Ⅱ, extreme still achieves satisfactory results while models can’t learn any effective after multiple iterations. experimental reveal that can automatically find representative heterogeneous environments strong adaptability study areas. This finding indicates digital elevation (DEM) high influence SSC both Besides DEM, Manasi River Basin more sensitive activities, Werigan–Kuqa Delta Oasis factors. suitable predicting scenarios ensuring accuracy. considerable potential dealing with complex regression tasks.
Язык: Английский
Процитировано
29Construction and Building Materials, Год журнала: 2023, Номер 395, С. 132330 - 132330
Опубликована: Июль 3, 2023
Язык: Английский
Процитировано
24Artificial Intelligence Review, Год журнала: 2024, Номер 57(8)
Опубликована: Июль 5, 2024
Abstract Significant uncertainties can be found in the modelling of geotechnical materials. This attributed to complex behaviour soils and rocks amidst construction processes. Over past decades, field has increasingly embraced application artificial intelligence methodologies, thus recognising their suitability forecasting non-linear relationships intrinsic review offers a critical evaluation AI methodologies incorporated computational mechanics for engineering. The analysis categorises four pivotal areas: physical properties, mechanical constitutive models, other characteristics relevant Among various analysed, ANNs stand out as most commonly used strategy, while methods such SVMs, LSTMs, CNNs also see significant level application. widely algorithms are Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), representing 35%, 19%, 17% respectively. extensive is domain accounting 59%, followed by applications at 16%. efficacy intrinsically linked type datasets employed, selected model input. study outlines future research directions emphasising need integrate physically guided adaptive learning mechanisms enhance reliability adaptability addressing multi-scale multi-physics coupled problems geotechnics.
Язык: Английский
Процитировано
11Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown
Опубликована: Июль 1, 2024
The current deep learning models for braced excavation cannot predict deformation from the beginning of due to need a substantial corpus sufficient historical data training purposes. To address this issue, study proposes transfer model based on sequence-to-sequence two-dimensional (2D) convolutional long short-term memory neural network (S2SCL2D). can use existing other adjacent similar excavations achieve wall deflection prediction once limited amount monitoring target has been recorded. In absence data, numerical simulation project be employed instead. A weight update strategy is proposed improve accuracy by integrating stochastic gradient masking with an early stopping mechanism. illustrate methodology, in Hangzhou, China adopted. model, which uses either or as source domain, shows significant improvement performance when compared non-transfer model. Using even leads better than using actual excavations. results demonstrate that reasonably project.
Язык: Английский
Процитировано
8Acta Geophysica, Год журнала: 2024, Номер 72(3), С. 1847 - 1866
Опубликована: Апрель 15, 2024
Язык: Английский
Процитировано
7Mathematics, Год журнала: 2025, Номер 13(2), С. 264 - 264
Опубликована: Янв. 15, 2025
In tunnel engineering, joint shear slip caused by external disturbances is a key factor contributing to landslides, instability of surrounding rock masses, and related hazards. Therefore, accurately characterizing the macromechanical properties joints essential for ensuring engineering safety. Given significant influence morphology on mechanical behavior, this study employs frequency spectrum fractal dimension (D) domain amplitude integral (Rq) as quantitative descriptors morphology. Using Fourier transform techniques, reconstruction method developed model with arbitrary shape characteristics. The numerical calibrated through 3D printing direct tests. Systematic parameter analysis validates selected indices effective Furthermore, multiple machine learning algorithms are employed construct robust predictive model. Machine learning, recognized rapidly advancing field, plays pivotal role in data-driven applications due its powerful analytical capabilities. study, six algorithms—Random Forest (RF), Support Vector Regression (SVR), BP Neural Network, GA-BP Genetic Programming (GP), ANN-based MCD—are evaluated using 300 samples. performance each algorithm assessed comparative their accuracy based correlation coefficients. results demonstrate that all achieve satisfactory performance. Notably, Random (RF) excels rapid accurate predictions when handling similar training data, while MCD consistently delivers stable precise across diverse datasets.
Язык: Английский
Процитировано
1