Prediction of collapsibility of loess site based on artificial intelligence: comparison of different algorithms DOI
Xueliang Zhu, Shuai Shao, Shengjun Shao

и другие.

Environmental Earth Sciences, Год журнала: 2024, Номер 83(3)

Опубликована: Янв. 25, 2024

Язык: Английский

Machine learning-based intelligent modeling of hydraulic conductivity of sandy soils considering a wide range of grain sizes DOI

Zia ur Rehman,

Usama Khalid, Nauman Ijaz

и другие.

Engineering Geology, Год журнала: 2022, Номер 311, С. 106899 - 106899

Опубликована: Окт. 26, 2022

Язык: Английский

Процитировано

69

A new index for cutter life evaluation and ensemble model for prediction of cutter wear DOI Open Access
Nan Zhang, Shui‐Long Shen, Annan Zhou

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2022, Номер 131, С. 104830 - 104830

Опубликована: Ноя. 14, 2022

Язык: Английский

Процитировано

59

COSMA-RF: New intelligent model based on chaos optimized slime mould algorithm and random forest for estimating the peak cutting force of conical picks DOI
Jian Zhou, Yong Dai, Kun Du

и другие.

Transportation Geotechnics, Год журнала: 2022, Номер 36, С. 100806 - 100806

Опубликована: Июль 8, 2022

Язык: Английский

Процитировано

42

Dynamic prediction for attitude and position of shield machine in tunneling: A hybrid deep learning method considering dual attention DOI

Zeyu Dai,

Peinan Li, Mengqi Zhu

и другие.

Advanced Engineering Informatics, Год журнала: 2023, Номер 57, С. 102032 - 102032

Опубликована: Июнь 8, 2023

Язык: Английский

Процитировано

35

Integrative modeling of heterogeneous soil salinity using sparse ground samples and remote sensing images DOI Creative Commons
Lingyue Wang, Ping Hu, Hongwei Zheng

и другие.

Geoderma, Год журнала: 2023, Номер 430, С. 116321 - 116321

Опубликована: Янв. 4, 2023

Soil salinization is a major environmental risk caused by natural or human activities especially in arid and semi-arid regions. Machine learning for rapidly monitoring large-scale spatial soil becomes possible. However, machine often needs large training samples obtaining extensive information field investigation laborious difficult. In practice, the sampling datasets are sparse non-normally distributed. The intricacy of features extracted from remote sensing images increases model complexity leads to degradation prediction performance. To solve this problem, an integrative framework proposed predict salt content (SSC) based on light gradient boosting (LGBM). model, we first introduce data augmentation method (Mixup) improve sample diversity alleviate overfitting sparsity samples. generalization robustness different heterogeneity salinization, Mixup-LGBM adaptively jointly optimized combining hyperparameters feature selection Bayesian optimization framework. Furthermore, interpretability improved using shapley additive explanations (SHAP) value combination confidence synthetic through visualization importance assessment. addition, cases simulated test Case I, raw sample-sparsity algorithm has higher accuracy than other unused models. Ⅱ, extreme still achieves satisfactory results while models can’t learn any effective after multiple iterations. experimental reveal that can automatically find representative heterogeneous environments strong adaptability study areas. This finding indicates digital elevation (DEM) high influence SSC both Besides DEM, Manasi River Basin more sensitive activities, Werigan–Kuqa Delta Oasis factors. suitable predicting scenarios ensuring accuracy. considerable potential dealing with complex regression tasks.

Язык: Английский

Процитировано

29

Effects of binder proportion and curing condition on the mechanical characteristics of volcanic ash- and slag-based geopolymer mortars; machine learning integrated experimental study DOI
Mohammad-Hossein Nofalah, Pooria Ghadir, Hadi Hasanzadehshooiili

и другие.

Construction and Building Materials, Год журнала: 2023, Номер 395, С. 132330 - 132330

Опубликована: Июль 3, 2023

Язык: Английский

Процитировано

24

State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering DOI Creative Commons
Hongchen Liu, Huaizhi Su, Lizhi Sun

и другие.

Artificial Intelligence Review, Год журнала: 2024, Номер 57(8)

Опубликована: Июль 5, 2024

Abstract Significant uncertainties can be found in the modelling of geotechnical materials. This attributed to complex behaviour soils and rocks amidst construction processes. Over past decades, field has increasingly embraced application artificial intelligence methodologies, thus recognising their suitability forecasting non-linear relationships intrinsic review offers a critical evaluation AI methodologies incorporated computational mechanics for engineering. The analysis categorises four pivotal areas: physical properties, mechanical constitutive models, other characteristics relevant Among various analysed, ANNs stand out as most commonly used strategy, while methods such SVMs, LSTMs, CNNs also see significant level application. widely algorithms are Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), representing 35%, 19%, 17% respectively. extensive is domain accounting 59%, followed by applications at 16%. efficacy intrinsically linked type datasets employed, selected model input. study outlines future research directions emphasising need integrate physically guided adaptive learning mechanisms enhance reliability adaptability addressing multi-scale multi-physics coupled problems geotechnics.

Язык: Английский

Процитировано

11

A deep transfer learning model for the deformation of braced excavations with limited monitoring data DOI Creative Commons
Yuanqin Tao, Shaoxiang Zeng,

Tiantian Ying

и другие.

Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Июль 1, 2024

The current deep learning models for braced excavation cannot predict deformation from the beginning of due to need a substantial corpus sufficient historical data training purposes. To address this issue, study proposes transfer model based on sequence-to-sequence two-dimensional (2D) convolutional long short-term memory neural network (S2SCL2D). can use existing other adjacent similar excavations achieve wall deflection prediction once limited amount monitoring target has been recorded. In absence data, numerical simulation project be employed instead. A weight update strategy is proposed improve accuracy by integrating stochastic gradient masking with an early stopping mechanism. illustrate methodology, in Hangzhou, China adopted. model, which uses either or as source domain, shows significant improvement performance when compared non-transfer model. Using even leads better than using actual excavations. results demonstrate that reasonably project.

Язык: Английский

Процитировано

8

A comparative analysis of hybrid RF models for efficient lithology prediction in hard rock tunneling using TBM working parameters DOI
Jian Zhou, Peixi Yang,

Weixun Yong

и другие.

Acta Geophysica, Год журнала: 2024, Номер 72(3), С. 1847 - 1866

Опубликована: Апрель 15, 2024

Язык: Английский

Процитировано

7

Analysis and Prediction of Grouting Reinforcement Performance of Broken Rock Considering Joint Morphology Characteristics DOI Creative Commons

Guanglin Liang,

Linchong Huang, Chengyong Cao

и другие.

Mathematics, Год журнала: 2025, Номер 13(2), С. 264 - 264

Опубликована: Янв. 15, 2025

In tunnel engineering, joint shear slip caused by external disturbances is a key factor contributing to landslides, instability of surrounding rock masses, and related hazards. Therefore, accurately characterizing the macromechanical properties joints essential for ensuring engineering safety. Given significant influence morphology on mechanical behavior, this study employs frequency spectrum fractal dimension (D) domain amplitude integral (Rq) as quantitative descriptors morphology. Using Fourier transform techniques, reconstruction method developed model with arbitrary shape characteristics. The numerical calibrated through 3D printing direct tests. Systematic parameter analysis validates selected indices effective Furthermore, multiple machine learning algorithms are employed construct robust predictive model. Machine learning, recognized rapidly advancing field, plays pivotal role in data-driven applications due its powerful analytical capabilities. study, six algorithms—Random Forest (RF), Support Vector Regression (SVR), BP Neural Network, GA-BP Genetic Programming (GP), ANN-based MCD—are evaluated using 300 samples. performance each algorithm assessed comparative their accuracy based correlation coefficients. results demonstrate that all achieve satisfactory performance. Notably, Random (RF) excels rapid accurate predictions when handling similar training data, while MCD consistently delivers stable precise across diverse datasets.

Язык: Английский

Процитировано

1