Information Fusion, Год журнала: 2024, Номер 113, С. 102595 - 102595
Опубликована: Июль 25, 2024
Язык: Английский
Information Fusion, Год журнала: 2024, Номер 113, С. 102595 - 102595
Опубликована: Июль 25, 2024
Язык: Английский
Information Fusion, Год журнала: 2023, Номер 100, С. 101944 - 101944
Опубликована: Июль 26, 2023
Язык: Английский
Процитировано
56Information Fusion, Год журнала: 2023, Номер 104, С. 102172 - 102172
Опубликована: Ноя. 30, 2023
Язык: Английский
Процитировано
45Information Processing & Management, Год журнала: 2024, Номер 61(3), С. 103653 - 103653
Опубликована: Янв. 14, 2024
Язык: Английский
Процитировано
33Tsinghua Science & Technology, Год журнала: 2024, Номер 29(5), С. 1249 - 1265
Опубликована: Май 2, 2024
With the emergence of artificial intelligence era, all kinds robots are traditionally used in agricultural production. However, studies concerning robot task assignment problem agriculture field, which is closely related to cost and efficiency a smart farm, limited. Therefore, Multi-Weeding Robot Task Assignment (MWRTA) addressed this paper minimize maximum completion time residual herbicide. A mathematical model set up, Multi-Objective Teaching-Learning-Based Optimization (MOTLBO) algorithm presented solve problem. In MOTLBO algorithm, heuristic-based initialization comprising an improved Nawaz Enscore, Ham (NEH) heuristic load-based generate initial population with high level quality diversity. An effective teaching-learning-based optimization process designed dynamic grouping mechanism redefined individual updating rule. multi-neighborhood-based local search strategy provided balance exploitation exploration algorithm. Finally, comprehensive experiment conducted compare proposed several state-of-the-art algorithms literature. Experimental results demonstrate significant superiority for solving under consideration.
Язык: Английский
Процитировано
23Information Processing & Management, Год журнала: 2023, Номер 61(1), С. 103564 - 103564
Опубликована: Окт. 31, 2023
Язык: Английский
Процитировано
32Information Fusion, Год журнала: 2024, Номер 107, С. 102300 - 102300
Опубликована: Фев. 12, 2024
Язык: Английский
Процитировано
15Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 86 - 100
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2IEEE Transactions on Computational Social Systems, Год журнала: 2023, Номер 11(4), С. 5158 - 5167
Опубликована: Май 4, 2023
While online social media brings convenience to people's communication, it has also caused the widespread spread of rumors and brought great harm. Recent deep-learning approaches attempt identify by engaging in interactive user feedback. However, performance these models suffers from insufficient noisy labeled data. In this article, we propose a novel rumor detection model called graph contrastive learning with feature augmentation (FAGCL), which injects noise into space learns contrastively constructing asymmetric structures. FAGCL takes preference news embedding as initial features propagation tree then adopts attention network update node representations. To obtain graph-level representation for classification, fuses multiple pooling techniques. Moreover, an auxiliary task constrain consistency. Contrastive on data mines supervision information itself, making more robust effective. Results two real-world datasets demonstrate that our proposed achieves significant improvements over baseline models.
Язык: Английский
Процитировано
22Knowledge-Based Systems, Год журнала: 2023, Номер 270, С. 110547 - 110547
Опубликована: Апрель 6, 2023
Язык: Английский
Процитировано
18International Journal of Imaging Systems and Technology, Год журнала: 2023, Номер 34(1)
Опубликована: Сен. 27, 2023
Abstract Alzheimer's disease (AD) is a severe neurodegenerative that can cause dementia symptoms. Currently, most research methods for diagnosing AD rely on fusing neuroimaging data of different modalities to exploit their heterogeneity and complementarity. However, effectively using such multi‐modal information construct fusion remains challenging problem. To address this issue, we propose multi‐scale transformer network (MMTFN) computer‐aided diagnosis AD. Our comprises 3D residual block (3DMRB) layers the Transformer jointly learns potential representations data. The 3DMRB with aggregation efficiently extracts local abnormal related in brain. We conducted five experiments validate our model MRI PET images 720 subjects from Disease Neuroimaging Initiative (ADNI). experimental results show proposed outperformed existing models, achieving final classification accuracy 94.61% Normal Control.
Язык: Английский
Процитировано
18