The Aitken Accelerated Gradient Algorithm for a Class of Dual‐Rate Volterra Nonlinear Systems Utilizing the Self‐Organizing Map Technique DOI
Junwei Wang, Weili Xiong, Feng Ding

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2025, Номер unknown

Опубликована: Апрель 22, 2025

ABSTRACT This article focuses on the parameter estimation issues for dual‐rate Volterra fractional‐order autoregressive moving average models. In case of sampling, we derive a identification model system and implement intersample output with help an auxiliary method. Then, combined self‐organizing map technique, propose Aitken multi‐innovation gradient‐based iterative algorithm. The parameters are estimated using algorithm, whereas differential orders determined Moreover, computational cost proposed algorithm is analyzed floating point operation. Finally, convergence analysis simulation examples show effectiveness

Язык: Английский

Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data DOI
Feng Ding

Journal of Computational and Applied Mathematics, Год журнала: 2023, Номер 426, С. 115107 - 115107

Опубликована: Фев. 10, 2023

Язык: Английский

Процитировано

184

Filtered auxiliary model recursive generalized extended parameter estimation methods for Box–Jenkins systems by means of the filtering identification idea DOI
Feng Ding, Ling Xu, Xiao Zhang

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2023, Номер 33(10), С. 5510 - 5535

Опубликована: Март 30, 2023

Abstract For equation‐error autoregressive moving average systems, that is, Box–Jenkins this paper presents a filtered auxiliary model generalized extended stochastic gradient identification method, multi‐innovation recursive least squares and method by using the filtering idea idea. The proposed methods can be to other linear nonlinear multivariable systems with colored noises.

Язык: Английский

Процитировано

136

Separable synthesis gradient estimation methods and convergence analysis for multivariable systems DOI
Ling Xu, Feng Ding

Journal of Computational and Applied Mathematics, Год журнала: 2023, Номер 427, С. 115104 - 115104

Опубликована: Фев. 10, 2023

Язык: Английский

Процитировано

93

Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea DOI
Feng Ding, Ling Xu, Xiao Zhang

и другие.

Annual Reviews in Control, Год журнала: 2024, Номер 57, С. 100942 - 100942

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

70

State of art on state estimation: Kalman filter driven by machine learning DOI
Yuting Bai, Bin Yan, Chenguang Zhou

и другие.

Annual Reviews in Control, Год журнала: 2023, Номер 56, С. 100909 - 100909

Опубликована: Янв. 1, 2023

Язык: Английский

Процитировано

57

Multi‐innovation gradient‐based iterative identification methods for feedback nonlinear systems by using the decomposition technique DOI
Dan Yang, Feng Ding

International Journal of Robust and Nonlinear Control, Год журнала: 2023, Номер 33(13), С. 7755 - 7773

Опубликована: Июнь 3, 2023

Summary This paper studies the parameter estimation problems of feedback nonlinear systems. Combining multi‐innovation identification theory with negative gradient search, we derive a gradient‐based iterative algorithm. In order to reduce computational burden and further improve accuracy, decomposition algorithm is proposed by using technique. The key transform an original system into two subsystems estimate parameters each subsystem, respectively. A simulation example provided demonstrate effectiveness algorithms.

Язык: Английский

Процитировано

54

Unbiased recursive least squares identification methods for a class of nonlinear systems with irregularly missing data DOI
Wenxuan Liu, Meihang Li

International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 37(8), С. 2247 - 2275

Опубликована: Июнь 6, 2023

Summary Missing data often occur in industrial processes. In order to solve this problem, an auxiliary model and a particle filter are adopted estimate the missing outputs, two unbiased parameter estimation methods developed for class of nonlinear systems (e.g., bilinear systems) with irregularly data. Firstly, is constructed unknown output, model‐based multi‐innovation recursive least squares algorithm presented by expanding scalar innovation vector. Secondly, according bias compensation principle, proposed compensate caused colored noise. Thirdly, further improving accuracy, true output estimated filter, filtering‐based developed. Finally, numerical example selected validate effectiveness algorithms. The simulation results indicate that algorithms have good performance identifying

Язык: Английский

Процитировано

53

The filtering-based recursive least squares identification and convergence analysis for nonlinear feedback control systems with coloured noises DOI
Ling Xu, Huan Xu, Chun Wei

и другие.

International Journal of Systems Science, Год журнала: 2024, Номер 55(16), С. 3461 - 3484

Опубликована: Июль 7, 2024

Язык: Английский

Процитировано

16

Building Energy Prediction Models and Related Uncertainties: A Review DOI Creative Commons
Jiaqi Yu, Wen‐Shao Chang, Yu Dong

и другие.

Buildings, Год журнала: 2022, Номер 12(8), С. 1284 - 1284

Опубликована: Авг. 21, 2022

Building energy usage has been an important issue in recent decades, and prediction models are tools for analysing this problem. This study provides a comprehensive review of building uncertainties the models. First, paper introduces three types methods: white-box models, black-box grey-box The principles, strengths, shortcomings, applications every model discussed systematically. Second, analyses terms human, building, weather factors. Finally, research gaps predicting consumption summarised order to guide optimisation methods.

Язык: Английский

Процитировано

48

Detection of non‐suicidal self‐injury based on spatiotemporal features of indoor activities DOI Creative Commons
Guanci Yang, Siyuan Yang, Kexin Luo

и другие.

IET Biometrics, Год журнала: 2023, Номер 12(2), С. 91 - 101

Опубликована: Март 1, 2023

Abstract Non‐suicide self‐injury (NSSI) can be dangerous and difficult for guardians or caregivers to detect in time. NSSI refers when people hurt themselves even though they have no wish cause critical long‐lasting hurt. To timely identify effectively prevent order reduce the suicide rates of patients with a potential risk, detection based on spatiotemporal features indoor activities is proposed. Firstly, an behaviour dataset provided, it includes four categories that used scientific research evaluation. Secondly, algorithm (NssiDetection) NssiDetection calculates human bounding box by using object model employs extract temporal spatial behaviour. Thirdly, optimal combination schemes investigated checking its performance different methods training strategies. Lastly, case study performed implementing prototype system. The system has recognition accuracy 84.18% actions new backgrounds, persons, camera angles.

Язык: Английский

Процитировано

35