Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144124 - 144124
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144124 - 144124
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 365, С. 121499 - 121499
Опубликована: Июль 2, 2024
Язык: Английский
Процитировано
23Journal of Cleaner Production, Год журнала: 2024, Номер 449, С. 141303 - 141303
Опубликована: Март 12, 2024
Язык: Английский
Процитировано
20Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 106772 - 106772
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124237 - 124237
Опубликована: Янв. 29, 2025
Язык: Английский
Процитировано
0Frontiers in Environmental Science, Год журнала: 2025, Номер 13
Опубликована: Фев. 6, 2025
Background
To
improve
the
scientificity
of
evaluation
results
planting
performance
Yellow
River
sediment
based
on
substrate.
Methods
This
study
replaced
natural
soil
with
sediment,
used
cement
as
cementing
material,
added
different
proportions
organic
matter
and
amendment
habitat
material
to
prepare
substrate
carried
out
experiments
by
using
oats
proposed
a
combined
SQI-CRITIC
weighting
calculation
method
least
square
for
its
evaluation.
Results
The
showed
that
(1)
led
significant
variations
in
sediment:
among
5#
mix
ratio,
plant
height
(12.5
cm)
biomass
(3.06
g)
reached
extreme
values.
Photosynthetic
rate
(1.97
Язык: Английский
Процитировано
0Journal of Cleaner Production, Год журнала: 2024, Номер 455, С. 142374 - 142374
Опубликована: Апрель 27, 2024
Язык: Английский
Процитировано
2Energy, Год журнала: 2024, Номер 312, С. 133654 - 133654
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
2Systems Science & Control Engineering, Год журнала: 2023, Номер 12(1)
Опубликована: Дек. 18, 2023
Effective forecasting of carbon prices helps investors to judge market conditions and promotes the environment economic sustainability. The contribution this paper is constructing a novel secondary decomposition hybrid price model, namely CEEMD-SE-VMD-LSTM. It noteworthy that sample entropy introduced identify highly complex signals rather than empirically determined in previous studies. Specifically, complementary ensemble empirical mode (CEEMD) model used decompose original signals. (SE) variational (VMD) are conducted recognize components, while long short-term memory (LSTM) employed forecast by summing up predicted intrinsic function (IMF) components. conclusion shows proposed has smallest errors with values RMSE, MAE MAPE 0.2640, 0.1984 0.0044, respectively, models better other primary performances LSTM-type those GRU-type models. Further evidence convinces us accuracy superior long-term forecasting. Those conclusions innovation can provide valuable reference for make trading decisions.
Язык: Английский
Процитировано
4Energy Science & Engineering, Год журнала: 2024, Номер 12(6), С. 2568 - 2590
Опубликована: Май 13, 2024
Abstract To further enhance the precision of carbon trading price forecasting, this research proposes a combined forecasting model, CEEMDAN–VMD–IPSO–BiLSTM, considering unsatisfactory high‐frequency sequence decomposition and reliance on unidirectional neural networks in current price‐prediction models. First all, original prices is decomposed into multiple independent subsequences through completely ensemble empirical mode with adaptive noise (CEEMDAN) technique. The sample entropy values each subsequence are calculated to reconstruct them as high‐frequency, low‐frequency, trend sequences. Second, we employ variational (VMD) approach decompose series. obtained subsequences, along low‐frequency sequences, separately input an improved particle swarm optimization (IPSO) optimized bidirectional long short‐term memory network (BiLSTM) model for forecasting. Finally, IPSO–BiLSTM used integrate outcomes from previous step, yielding ultimate results predicting prices. case studies reveal that compared benchmark exhibits superior predictive universality. It offers theoretical support optimizing market operations fostering low‐carbon economic growth, holding practical importance.
Язык: Английский
Процитировано
1Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144124 - 144124
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1