Prediction of heat exchanger efficiency using laminar heat transfer in swirling flow of radiated graphene oxide with nano fluid additives using machine learning technique DOI

Shalini M. Patil,

Abilash Radhakrishnan, Sanjay R. Pawar

и другие.

Numerical Heat Transfer Part B Fundamentals, Год журнала: 2024, Номер unknown, С. 1 - 19

Опубликована: Июль 17, 2024

Nanotechnology has recently led to new possibilities for enhancing heat transfer in exchangers. The remarkable thermal characteristics of graphene oxide (GO)-based nanofluids with nanoscale additions have garnered significant attention particular. When and intricate flow patterns are involved, traditional analytical models frequently fail appropriately forecast the efficiency Analyzed phenomenon laminar a exchanger that swirling fluid dynamics, pressure drop, predicted condensation coefficient (HTC) LHT. functionalized radiated GO was chosen as nanomaterials present Pre-processing Data Methods managing outliers by machine learning (ML) models, like CLAHE algorithm. logarithmic mean temperature difference (LMTD) can be used determine driving power within exchanger. Dynamic Smagorinsky Model (DSLM) Wall-Adapting Local Eddy-viscosity (WALE) turbulence primarily designed capturing turbulent behavior flows. Kern technique Hagen–Poiseuille equation drop pumping needed shell tube through microtube based on Levenberg–Marquardt Momentum Algorithm predict Nusselt number prediction sensitivity HTC an LHT-trained ML model is evaluate performance. methods may effectively maximize performance setting nanofluid accuracy score 99%, demonstrating its exceptional predictive capabilities results great potential improve energy efficiency, save operating costs, advance sustainable practices various industrial applications.

Язык: Английский

Prediction and optimization of Nd: YAG laser transmission micro-channelling on PMMA employing an artificial neural network model DOI
S. Biswas, K. Mandal, D. Pramanik

и другие.

Infrared Physics & Technology, Год журнала: 2024, Номер 137, С. 105121 - 105121

Опубликована: Янв. 2, 2024

Язык: Английский

Процитировано

3

Laser technologies in manufacturing functional materials and applications of machine learning-assisted design and fabrication DOI
Xiangning Zhang, Li Zhou,

Guodong Feng

и другие.

Advanced Composites and Hybrid Materials, Год журнала: 2024, Номер 8(1)

Опубликована: Дек. 23, 2024

Язык: Английский

Процитировано

3

Artificial Intelligence Meets Laser Technology: A Review of Recent Advances DOI Creative Commons
Suleiman M. Elhamali, Hmeda Musbah,

Lubna Zawi

и другие.

Results in Surfaces and Interfaces, Год журнала: 2025, Номер unknown, С. 100484 - 100484

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

AI-powered hybrid metaheuristic optimization for predicting surface roughness and kerf width in CO 2 laser cutting of 3D-printed PLA-CF composites DOI
Gökhan BAŞAR, Oğuzhan Der, Mehmet Ali Güvenç

и другие.

Journal of Thermoplastic Composite Materials, Год журнала: 2025, Номер unknown

Опубликована: Май 17, 2025

This study explores the impact of CO 2 laser cutting parameters on surface roughness and kerf width 3D-printed Carbon Fiber reinforced Polylactic Acid (PLA-CF) composites while developing phenomenological models using hybrid artificial intelligence techniques. PLA-CF possess certain mechanical properties quality. The values were measured under different conditions (such as plate thickness, power, speed) predicted multiple linear regression, particle swarm optimization-based adaptive neuro fuzzy inference system, ant colony system models. Experimental results showed that are influenced significantly by parameters, showing importance accurately selecting parameters. most dominant factor entered model speed: speed was increased, decreased, but higher levels power resulted in width. Thickness provided a non-linear input: decreased from to 2.5 mm, then increased 4 mm. least (0.809 mm) obtained at 90 W 9 mm/s speed, with mm thickness. Surface minimum (1.878 µm) thickness 3 speed. Among models, gave best accuracy, achieving lowest mean squared error highest correlation coefficient, whereas performed better than regression not optimization. These results, therefore, validate applicability for predicting quality during cutting.

Язык: Английский

Процитировано

0

Kerf Geometry Prediction and Optimization in Laser Cutting of Basalt Fiber Reinforced Polymer Composites Using Decision Tree and Coati Optimization Algorithm DOI Creative Commons
Ammar H. Elsheikh, Ninshu Ma, Fadl A. Essa

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105514 - 105514

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Effect of processing parameters on overhanging channel forming quality during laser powder bed fusion of AlSi10Mg DOI
Tao Yang, Xiangyuan Chen, Tingting Liu

и другие.

Journal of Manufacturing Processes, Год журнала: 2023, Номер 109, С. 537 - 548

Опубликована: Дек. 29, 2023

Язык: Английский

Процитировано

7

A combined approach of artificial neural network, multi-objective genetic algorithm, and response surface methodology for enhanced PMMA micro-channeling in low power fiber laser beam machining DOI
A. Sen, D. Pramanik, N. Roy

и другие.

Optik, Год журнала: 2024, Номер 300, С. 171624 - 171624

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

2

Enhancing predictive accuracy for Cr(VI) removal in polymer inclusion membranes: A comparative study of machine learning models DOI

Abdelhalim Fetimi,

Ounissa Kebiche-Senhadji,

Yacine Benguerba

и другие.

Inorganica Chimica Acta, Год журнала: 2024, Номер 567, С. 122050 - 122050

Опубликована: Апрель 8, 2024

Язык: Английский

Процитировано

2

A novel method for air assisted nanosecond pulsed fiber laser beam transmission micro-channelling on thick PMMA material DOI
S. Biswas, D. Pramanik, A. Sen

и другие.

Materials Science and Engineering B, Год журнала: 2024, Номер 305, С. 117433 - 117433

Опубликована: Май 19, 2024

Язык: Английский

Процитировано

2

Implementation of LQR based SOD control in diode laser beam machining on leather specimens DOI
M. Mohamed Rabik, S. Vasanth, T. Muthuramalingam

и другие.

Optics & Laser Technology, Год журнала: 2023, Номер 170, С. 110328 - 110328

Опубликована: Ноя. 13, 2023

Язык: Английский

Процитировано

4