Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 94, С. 102946 - 102946
Опубликована: Янв. 18, 2025
Язык: Английский
Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 94, С. 102946 - 102946
Опубликована: Янв. 18, 2025
Язык: Английский
Journal of Manufacturing Systems, Год журнала: 2024, Номер 74, С. 180 - 197
Опубликована: Март 19, 2024
Язык: Английский
Процитировано
19Innovation and Green Development, Год журнала: 2024, Номер 3(4), С. 100173 - 100173
Опубликована: Авг. 19, 2024
Язык: Английский
Процитировано
19Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109780 - 109780
Опубликована: Окт. 18, 2024
Язык: Английский
Процитировано
19Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 95, С. 102981 - 102981
Опубликована: Фев. 20, 2025
Язык: Английский
Процитировано
5Journal of Manufacturing Systems, Год журнала: 2024, Номер 74, С. 264 - 290
Опубликована: Март 27, 2024
Язык: Английский
Процитировано
12International Journal of Production Research, Год журнала: 2024, Номер unknown, С. 1 - 29
Опубликована: Май 30, 2024
Flexible job shop scheduling problem (FJSP) with worker flexibility has gained significant attention in the upcoming Industry 5.0 era because of its computational complexity and importance production processes. It is normally assumed that each machine typically operated by one at any time; therefore, shop-floor managers need to decide on most efficient assignments for machines workers. However, processing time variable uncertain due fluctuating environment caused unsteady operating conditions learning effect Meanwhile, they also balance workload while meeting efficiency. Thus a dual resource-constrained FJSP worker's fuzzy (F-DRCFJSP-WL) investigated simultaneously minimise makespan, total workloads maximum workload. Subsequently, reinforcement enhanced multi-objective memetic algorithm based decomposition (RL-MOMA/D) proposed solving F-DRCFJSP-WL. For RL-MOMA/D, Q-learning incorporated into perform neighbourhood search further strengthen exploitation capability algorithm. Finally, comprehensive experiments extensive test instances case study aircraft overhaul are conducted demonstrate effectiveness superiority method.
Язык: Английский
Процитировано
12IEEE Access, Год журнала: 2024, Номер 12, С. 81938 - 81967
Опубликована: Янв. 1, 2024
Industry 5.0 is one of the emerging stages industrialization in which humans collaborate with cutting-edge technologies to enhance various workplace processes. The primary objective emphasize meeting needs people and provide enhanced resilience understanding sustainability. enables cooperation such advanced stakeholders education sector ensure efficiency effectiveness teaching-learning process. present study provides an exhaustive review role smart education. At outset, a brief overview scenario its associated challenges presented. This sets stage for establishing need Education 1.0 progressive transition 4.0. Further, motivation integrate 4.0 related enabling that support are discussed. paper extensively description application educational sectors namely medical education, further learning, distance engineering shop floor training. also presents seven case studies highlighting successful implementation versatile regions. Finally, discussed pointing potential future directions research.
Язык: Английский
Процитировано
10Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112780 - 112780
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103282 - 103282
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
2Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110829 - 110829
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1