A human-centric order release method based on workload control in high-variety make-to-order shops towards Industry 5.0 DOI
Lin Ma, Ray Y. Zhong,

Mingze Yuan

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 94, С. 102946 - 102946

Опубликована: Янв. 18, 2025

Язык: Английский

Flexible job shop scheduling with stochastic machine breakdowns by an improved tuna swarm optimization algorithm DOI
Chengshuai Fan, Wentao Wang, Jun Tian

и другие.

Journal of Manufacturing Systems, Год журнала: 2024, Номер 74, С. 180 - 197

Опубликована: Март 19, 2024

Язык: Английский

Процитировано

19

Industry 5.0 and sustainability: An overview of emerging trends and challenges for a green future DOI
Rame Rame, Purwanto Purwanto,

Sudarno Sudarno

и другие.

Innovation and Green Development, Год журнала: 2024, Номер 3(4), С. 100173 - 100173

Опубликована: Авг. 19, 2024

Язык: Английский

Процитировано

19

Review on ensemble meta-heuristics and reinforcement learning for manufacturing scheduling problems DOI
Yaping Fu, Yifeng Wang, Kaizhou Gao

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109780 - 109780

Опубликована: Окт. 18, 2024

Язык: Английский

Процитировано

19

A disjunctive graph-based metaheuristic for flexible job-shop scheduling problems considering fixture shortages in customized manufacturing systems DOI
Jiahang Li, Qihao Liu, Cuiyu Wang

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 95, С. 102981 - 102981

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

5

An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: An application for machining workshop DOI

Shupeng Wei,

Hongtao Tang, Xixing Li

и другие.

Journal of Manufacturing Systems, Год журнала: 2024, Номер 74, С. 264 - 290

Опубликована: Март 27, 2024

Язык: Английский

Процитировано

12

A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling toward Industry 5.0 DOI
Xiao Chang, Xiaoliang Jia, Jiahao Ren

и другие.

International Journal of Production Research, Год журнала: 2024, Номер unknown, С. 1 - 29

Опубликована: Май 30, 2024

Flexible job shop scheduling problem (FJSP) with worker flexibility has gained significant attention in the upcoming Industry 5.0 era because of its computational complexity and importance production processes. It is normally assumed that each machine typically operated by one at any time; therefore, shop-floor managers need to decide on most efficient assignments for machines workers. However, processing time variable uncertain due fluctuating environment caused unsteady operating conditions learning effect Meanwhile, they also balance workload while meeting efficiency. Thus a dual resource-constrained FJSP worker's fuzzy (F-DRCFJSP-WL) investigated simultaneously minimise makespan, total workloads maximum workload. Subsequently, reinforcement enhanced multi-objective memetic algorithm based decomposition (RL-MOMA/D) proposed solving F-DRCFJSP-WL. For RL-MOMA/D, Q-learning incorporated into perform neighbourhood search further strengthen exploitation capability algorithm. Finally, comprehensive experiments extensive test instances case study aircraft overhaul are conducted demonstrate effectiveness superiority method.

Язык: Английский

Процитировано

12

Industry 5.0 in Smart Education: Concepts, Applications, Challenges, Opportunities, and Future Directions DOI Creative Commons

Y. Supriya,

Dasari Bhulakshmi, Sweta Bhattacharya

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 81938 - 81967

Опубликована: Янв. 1, 2024

Industry 5.0 is one of the emerging stages industrialization in which humans collaborate with cutting-edge technologies to enhance various workplace processes. The primary objective emphasize meeting needs people and provide enhanced resilience understanding sustainability. enables cooperation such advanced stakeholders education sector ensure efficiency effectiveness teaching-learning process. present study provides an exhaustive review role smart education. At outset, a brief overview scenario its associated challenges presented. This sets stage for establishing need Education 1.0 progressive transition 4.0. Further, motivation integrate 4.0 related enabling that support are discussed. paper extensively description application educational sectors namely medical education, further learning, distance engineering shop floor training. also presents seven case studies highlighting successful implementation versatile regions. Finally, discussed pointing potential future directions research.

Язык: Английский

Процитировано

10

Multi-objective fitness landscape-based estimation of distribution algorithm for distributed heterogeneous flexible job shop scheduling problem DOI
Fuqing Zhao, Mengjie Li, Ningning Zhu

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112780 - 112780

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Tackling dual-resource flexible job shop scheduling problem in the production line reconfiguration scenario: An efficient meta-heuristic with critical path-based neighborhood search DOI
Ziyu Zhang, Xinyu Li, Liang Gao

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103282 - 103282

Опубликована: Апрель 3, 2025

Язык: Английский

Процитировано

2

Solving multi-objective energy-saving flexible job shop scheduling problem by hybrid search genetic algorithm DOI
L. Hao, Zhiyuan Zou, Xu Liang

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110829 - 110829

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1