Fast random opposition-based learning Golden Jackal Optimization algorithm DOI

Sarada Mohapatra,

Prabhujit Mohapatra

Knowledge-Based Systems, Год журнала: 2023, Номер 275, С. 110679 - 110679

Опубликована: Июнь 5, 2023

Язык: Английский

Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems DOI Creative Commons
Mohammad Dehghani, Zeinab Montazeri, Eva Trojovská

и другие.

Knowledge-Based Systems, Год журнала: 2022, Номер 259, С. 110011 - 110011

Опубликована: Окт. 28, 2022

In this paper, a new metaheuristic algorithm called the Coati Optimization Algorithm (COA) is introduced, which mimics coati behavior in nature. The fundamental idea of COA simulation two natural behaviors coatis: (i) their when attacking and hunting iguanas (ii) escape from predators. implementation steps are described mathematically modeled phases exploration exploitation. performance evaluated on fifty-one objective functions, including twenty-nine functions IEEE CEC-2017 test suite twenty-two real-world applications CEC-2011 suite. COA's results compared to those eleven well-known algorithms. indicate that has an evident superiority over algorithms by balancing global search exploitation local search, far more competitive. To assess effectiveness applications, proposed approach implemented four practical optimization problems, high capability dealing with these types problems.

Язык: Английский

Процитировано

523

Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications DOI
Shijie Zhao, Tianran Zhang,

Shilin Ma

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 114, С. 105075 - 105075

Опубликована: Июль 16, 2022

Язык: Английский

Процитировано

306

Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion DOI
Mohamed Abdel‐Basset, Reda Mohamed,

Shaimaa A. Abdel Azeem

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 268, С. 110454 - 110454

Опубликована: Март 11, 2023

Язык: Английский

Процитировано

290

Crayfish optimization algorithm DOI
Heming Jia, Honghua Rao, Changsheng Wen

и другие.

Artificial Intelligence Review, Год журнала: 2023, Номер 56(S2), С. 1919 - 1979

Опубликована: Сен. 2, 2023

Язык: Английский

Процитировано

261

Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization DOI
Fatma A. Hashim, Reham R. Mostafa, Abdelazim G. Hussien

и другие.

Knowledge-Based Systems, Год журнала: 2022, Номер 260, С. 110146 - 110146

Опубликована: Ноя. 29, 2022

Язык: Английский

Процитировано

172

Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering optimization DOI
Gang Hu,

Yuxuan Guo,

Guo Wei

и другие.

Advanced Engineering Informatics, Год журнала: 2023, Номер 58, С. 102210 - 102210

Опубликована: Окт. 1, 2023

Язык: Английский

Процитировано

161

Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm DOI Creative Commons
Mohammad Hussein Amiri, Nastaran Mehrabi Hashjin, Mohsen Montazeri

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Фев. 29, 2024

Abstract The novelty of this article lies in introducing a novel stochastic technique named the Hippopotamus Optimization (HO) algorithm. HO is conceived by drawing inspiration from inherent behaviors observed hippopotamuses, showcasing an innovative approach metaheuristic methodology. conceptually defined using trinary-phase model that incorporates their position updating rivers or ponds, defensive strategies against predators, and evasion methods, which are mathematically formulated. It attained top rank 115 out 161 benchmark functions finding optimal value, encompassing unimodal high-dimensional multimodal functions, fixed-dimensional as well CEC 2019 test suite 2014 dimensions 10, 30, 50, 100 Zigzag Pattern suggests demonstrates noteworthy proficiency both exploitation exploration. Moreover, it effectively balances exploration exploitation, supporting search process. In light results addressing four distinct engineering design challenges, has achieved most efficient resolution while concurrently upholding adherence to designated constraints. performance evaluation algorithm encompasses various aspects, including comparison with WOA, GWO, SSA, PSO, SCA, FA, GOA, TLBO, MFO, IWO recognized extensively researched metaheuristics, AOA recently developed algorithms, CMA-ES high-performance optimizers acknowledged for success IEEE competition. According statistical post hoc analysis, determined be significantly superior investigated algorithms. source codes publicly available at https://www.mathworks.com/matlabcentral/fileexchange/160088-hippopotamus-optimization-algorithm-ho .

Язык: Английский

Процитировано

154

Crested Porcupine Optimizer: A new nature-inspired metaheuristic DOI
Mohamed Abdel‐Basset, Reda Mohamed, Mohamed Abouhawwash

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 284, С. 111257 - 111257

Опубликована: Дек. 22, 2023

Язык: Английский

Процитировано

146

Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems DOI
Mohamed Abdel‐Basset, Doaa El-Shahat, Mohammed Jameel

и другие.

Artificial Intelligence Review, Год журнала: 2023, Номер 56(9), С. 9329 - 9400

Опубликована: Янв. 30, 2023

Язык: Английский

Процитировано

120

Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems DOI
Qingke Zhang, Hao Gao, Zhi‐Hui Zhan

и другие.

Knowledge-Based Systems, Год журнала: 2022, Номер 261, С. 110206 - 110206

Опубликована: Дек. 17, 2022

Язык: Английский

Процитировано

117