Semi-analytical algorithm for quasicrystal patterns DOI

Keyue Sun,

Xiangjie Kong,

Junxiang Yang

и другие.

Computers & Mathematics with Applications, Год журнала: 2024, Номер 180, С. 130 - 143

Опубликована: Дек. 30, 2024

Язык: Английский

Reduced-order prediction model for the Cahn–Hilliard equation based on deep learning DOI

Zhixian Lv,

Xin Song, Jiachen Feng

и другие.

Engineering Analysis with Boundary Elements, Год журнала: 2025, Номер 172, С. 106118 - 106118

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

3

On the phase field based model for the crystalline transition and nucleation within the Lagrange multiplier framework DOI
Qing Xia, Junxiang Yang, Junseok Kim

и другие.

Journal of Computational Physics, Год журнала: 2024, Номер 513, С. 113158 - 113158

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

13

Design of the shell-infill structures using a phase field-based topology optimization method DOI
Wenxuan Xie, Jiachen Feng, Qing Xia

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 429, С. 117138 - 117138

Опубликована: Июнь 14, 2024

Язык: Английский

Процитировано

10

A second-order accurate numerical method with unconditional energy stability for the Lifshitz-Petrich equation on curved surfaces DOI
Xiaochuan Hu, Qing Xia,

Binhu Xia

и другие.

Applied Mathematics Letters, Год журнала: 2024, Номер unknown, С. 109439 - 109439

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

6

Multi-morphological design of TPMS-based microchannels for thermal performance optimization DOI

Zi-Peng Chi,

Guanhua Yang, Qinghui Wang

и другие.

Applied Thermal Engineering, Год журнала: 2024, Номер 255, С. 124050 - 124050

Опубликована: Июль 27, 2024

Язык: Английский

Процитировано

4

Stability analysis of a numerical method for the 3D high-order Allen–Cahn equation DOI Creative Commons

Seokjun Ham,

Jyoti,

Jaeyong Choi

и другие.

AIP Advances, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 1, 2025

The Allen–Cahn (AC) equation describes how phase separation occurs in binary alloy systems and the dynamics of interfaces between different phases. In present study, we incorporated function high order polynomial potentials standard AC stability condition for numerical scheme that is used to solve problem three-dimensional space. We a fully explicit Euler temporal derivatives second-order finite difference approach spatial discretization. However, known its speed accuracy due use small time steps, but it subject step size limitation. Here, derived validated satisfies discrete maximum principle assures scheme. Several experiments are carried out under constrained ensure method, scheme, principle.

Язык: Английский

Процитировано

0

On the phase-field algorithm for distinguishing connected regions in digital model DOI

Sijing Lai,

Bing Jiang, Qing Xia

и другие.

Engineering Analysis with Boundary Elements, Год журнала: 2024, Номер 168, С. 105918 - 105918

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

2

On the adaption of biological transport networks affected by complex domains DOI
Yibao Li,

Zhixian Lv,

Qing Xia

и другие.

Physics of Fluids, Год журнала: 2024, Номер 36(10)

Опубликована: Окт. 1, 2024

This paper aims to simulate and analyze scenarios involving obstacles parasitic organisms during the growth of biological structures. We introduce an innovative model transport networks in complex domains. By manipulating sources sinks, we two distinct types One obstructs nutrient without absorbing energy. The other one absorbs Our adheres continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. phase field-based discrete system is decoupled, linear, unconditionally stable, facilitating straightforward implementation algorithm. scheme maintains stability addressing stiffness hybrid system. research demonstrates that effective mathematical modeling numerical methods can accurately

Язык: Английский

Процитировано

2

A fast evaluation method for surface area, volume fraction, and hydraulic diameter of TPMS with different geometric characteristics DOI

Xinyu He,

Ce Yang,

Mingqiu Zheng

и другие.

Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, Год журнала: 2024, Номер unknown

Опубликована: Сен. 27, 2024

The utilization of triply periodic minimal surface (TPMS) structures, fabricated through additive manufacturing techniques, in engineering applications has garnered considerable attention. However, existing studies have largely overlooked the intricate relationship between design parameters and key geometric indices such as area, volume fraction, hydraulic diameters, along with their distribution patterns. This study aims to fill this gap by conducting a comprehensive investigation unveil correlations performance for various TPMS types. A newly developed parallelogram patch method area calculation is introduced compared conventional triangular method. Regression equations are synthesized derive based on parameters, facilitating final prediction. Notably, Fischer Koch S, Schoen I-WP, Schwarz Primitive emerge leading performers, achieving largest 21.523 m 2 , fraction 0.8732, diameter 0.7856 m, respectively, within feasible range. Conversely, Gyroid, Primitive, S exhibit lowest 3.5668 0.0752, 0.0745 m. regression calculating method, demonstrate commendable accuracy, less than 2.5% relative error, making them suitable practical calculations. These summarized can serve valuable guide preliminary lattices.

Язык: Английский

Процитировано

1

Geometric Modeling for Microstructure Design and Manufacturing: A Review of Representations and Modeling Algorithms DOI
Qiang Zou,

Guoyue Luo

Computer-Aided Design, Год журнала: 2024, Номер unknown, С. 103834 - 103834

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

1