Glasslike cross-plane thermal conductivity of the kagome metals RbV3Sb5 and CsV3Sb5 DOI
Yu Pang,

Jinjin Liu,

Xuanhui Fan

и другие.

Physical review. B./Physical review. B, Год журнала: 2023, Номер 108(20)

Опубликована: Ноя. 8, 2023

In this paper, we report on the thermal conductivity of ${\mathrm{RbV}}_{3}{\mathrm{Sb}}_{5}$ and ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ with three-dimensional charge density wave phase transitions from 40 to 500 K measured by pump-probe thermoreflectance techniques. At room temperature, in-plane (basal plane) conductivities are found be moderate, $12\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ $8.8\phantom{\rule{0.16em}{0ex}}\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$, ultralow cross-plane (stacking direction) observed, $0.72\phantom{\rule{0.16em}{0ex}}\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ $0.49\phantom{\rule{0.16em}{0ex}}\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$. A unique glasslike temperature dependence in is which decreases monotonically even lower than Cahill-Pohl limit as below transition point ${T}_{\mathrm{CDW}}$. This obey hopping transport picture. addition, a peak observed at ${T}_{\mathrm{CDW}}$ fingerprint modulated structural distortion along stacking direction.

Язык: Английский

A review of machine learning methods applied to structural dynamics and vibroacoustic DOI
Barbara Zaparoli Cunha, Christophe Droz, Abdelmalek Zine

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2023, Номер 200, С. 110535 - 110535

Опубликована: Июнь 27, 2023

Язык: Английский

Процитировано

78

Review of progress in calculation and simulation of high-temperature oxidation DOI
Dongxin Gao, Zhao Shen, Kai Chen

и другие.

Progress in Materials Science, Год журнала: 2024, Номер 147, С. 101348 - 101348

Опубликована: Июль 31, 2024

Язык: Английский

Процитировано

70

Unveiling thermal stresses in RETaO4 (RE = Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) by first-principles calculations and finite element simulations DOI

Mengdi Gan,

Xiaoyu Chong,

Tianlong Lu

и другие.

Acta Materialia, Год журнала: 2024, Номер 271, С. 119904 - 119904

Опубликована: Апрель 8, 2024

Язык: Английский

Процитировано

31

Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates DOI Creative Commons
Jing Wu, E Zhou, An Huang

и другие.

Nature Communications, Год журнала: 2024, Номер 15(1)

Опубликована: Март 25, 2024

Abstract High-efficient heat dissipation plays critical role for high-power-density electronics. Experimental synthesis of ultrahigh thermal conductivity boron arsenide (BAs, 1300 W m −1 K ) cooling substrates into the wide-bandgap semiconductor gallium nitride (GaN) devices has been realized. However, lack systematic analysis on transfer across GaN-BAs interface hampers practical applications. In this study, by constructing accurate and high-efficient machine learning interatomic potentials, we perform multiscale simulations heterostructures. Ultrahigh interfacial conductance 260 MW −2 is achieved, which lies in well-matched lattice vibrations BAs GaN. The strong temperature dependence found between 300 to 450 K. Moreover, competition grain size boundary resistance revealed with increasing from 1 nm 1000 μm. Such deep-potential equipped not only promote applications electronics, but also offer approach designing advanced management systems.

Язык: Английский

Процитировано

24

Decoding Electrochemical Processes of Lithium‐Ion Batteries by Classical Molecular Dynamics Simulations DOI
Xi Tan, Ming Chen, Jinkai Zhang

и другие.

Advanced Energy Materials, Год журнала: 2024, Номер 14(22)

Опубликована: Март 19, 2024

Abstract Lithium‐ion batteries (LIBs) have played an essential role in the energy storage industry and dominated power sources for consumer electronics electric vehicles. Understanding electrochemistry of LIBs at molecular scale is significant improving their performance, stability, lifetime, safety. Classical dynamics (MD) simulations could directly capture atomic motions thus provide dynamic insights into electrochemical processes ion transport during charging discharging that are usually challenging to observe experimentally, which momentous developing with superb performance. This review discusses developments MD approaches using non‐reactive force fields, reactive machine learning potential modeling chemical reactions reactants electrodes, electrolytes, electrode‐electrolyte interfaces. It also comprehensively how interactions, structures, transport, reaction affect electrode capacity, interfacial properties. Finally, remaining challenges envisioned future routes commented on high‐fidelity, effective simulation methods decode invisible interactions LIBs.

Язык: Английский

Процитировано

18

Machine learning strategies for small sample size in materials science DOI
Qiuling Tao,

Jinxin Yu,

Xiangyu Mu

и другие.

Science China Materials, Год журнала: 2025, Номер unknown

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

2

Alignment engineering in thermal materials DOI
Bin Xie,

Weixian Zhao,

Xiaobing Luo

и другие.

Materials Science and Engineering R Reports, Год журнала: 2023, Номер 154, С. 100738 - 100738

Опубликована: Май 22, 2023

Язык: Английский

Процитировано

35

A Critical Review of Machine Learning Techniques on Thermoelectric Materials DOI
Xiangdong Wang, Ye Sheng, Jinyan Ning

и другие.

The Journal of Physical Chemistry Letters, Год журнала: 2023, Номер 14(7), С. 1808 - 1822

Опубликована: Фев. 10, 2023

Thermoelectric (TE) materials can directly convert heat to electricity and vice versa have broad application potential for solid-state power generation refrigeration. Over the past few decades, efforts been made develop new TE with high performance. However, traditional experiments simulations are expensive time-consuming, limiting development of materials. Machine learning (ML) has increasingly applied study in recent years. This paper reviews progress ML-based material research. The ML predicting optimizing properties materials, including electrical thermal transport optimization functional targeted properties, is reviewed. Finally, future research directions discussed.

Язык: Английский

Процитировано

33

Application of Machine Learning in Predicting the Thermal Conductivity of Single-Filler Polymer Composites DOI

Yinzhou Liu,

Weidong Zheng,

Haoqiang Ai

и другие.

Materials Today Communications, Год журнала: 2024, Номер 39, С. 109116 - 109116

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

9

Machine learning-enabled development of high performance gradient-index phononic crystals for energy focusing and harvesting DOI
Sangryun Lee, Wonjae Choi, Jeong Won Park

и другие.

Nano Energy, Год журнала: 2022, Номер 103, С. 107846 - 107846

Опубликована: Сен. 23, 2022

Язык: Английский

Процитировано

37