Infrared and visible video fusion method based on local differential correlation features and PID control DOI Creative Commons
Xiaolin Tang, Jun Wang

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Май 29, 2024

Abstract The purpose of infrared and visible video fusion is to combine the complementary features videos from different modalities. Most algorithms ignore feature associations adjacent frames guidance source process. Therefore, this paper proposes a new method. First, spatial-domain multi-attribute detail extraction model proposed, which capable extracting base layer, bright layer dark separately. Then, we propose an associated for frames, improves spatial continuity fused video. Furthermore, exponential homomorphic filter simultaneously increases dynamic range contrast obtain general salient target model. In stage, weighted rule based on edge intensity used in layer. Then design controller, transfer function measurement separately, so as construct closed-loop proportional-integral-derivative (PID) control system fuse ensures that maintains more information Experiments public datasets demonstrate our method outperforms some state-of-the-art algorithms.

Язык: Английский

EV-Fusion: A Novel Infrared and Low-Light Color Visible Image Fusion Network Integrating Unsupervised Visible Image Enhancement DOI Creative Commons
Xin Zhang, Xia Wang, Changda Yan

и другие.

IEEE Sensors Journal, Год журнала: 2024, Номер 24(4), С. 4920 - 4934

Опубликована: Янв. 3, 2024

Infrared and visible image fusion can effectively integrate the advantages of two source images, preserving significant target information rich texture details. However, most existing methods are only designed for well-illuminated scenes tend to lose details when encountering low-light because poor brightness images. Some incorporate a light adjustment module, but they typically focus on enhancing intensity neglect enhancement color feature, resulting in unsatisfactory visual effects fused To address this issue, paper proposes novel method called EV-fusion, which explores potential detail features images improve perception Specifically, an unsupervised module is that restores texture, structure by several non-reference loss functions. Then, devised enhanced infrared image. Moreover, salient object feature we propose bilateral-guided salience map embedding into Extensive experiments demonstrate our outperforms state-of-the-art methods.

Язык: Английский

Процитировано

17

BTSFusion: Fusion of infrared and visible image via a mechanism of balancing texture and salience DOI
Yao Qian, Gang Liu, Haojie Tang

и другие.

Optics and Lasers in Engineering, Год журнала: 2023, Номер 173, С. 107925 - 107925

Опубликована: Ноя. 9, 2023

Язык: Английский

Процитировано

20

Infrared and low-light visible image fusion based on hybrid multiscale decomposition and adaptive light adjustment DOI

Dengpeng Zou,

Bin Yang

Optics and Lasers in Engineering, Год журнала: 2022, Номер 160, С. 107268 - 107268

Опубликована: Сен. 11, 2022

Язык: Английский

Процитировано

25

FusionPID: A PID control system for the fusion of infrared and visible light images DOI
Linlu Dong, Jun Wang

Measurement, Год журнала: 2023, Номер 217, С. 113015 - 113015

Опубликована: Май 18, 2023

Язык: Английский

Процитировано

12

Infrared and visible image fusion based on iterative differential thermal information filter DOI
Yanling Chen, Lianglun Cheng, Heng Wu

и другие.

Optics and Lasers in Engineering, Год журнала: 2021, Номер 148, С. 106776 - 106776

Опубликована: Авг. 17, 2021

Язык: Английский

Процитировано

26

Infrared and visible fusion imaging via double-layer fusion denoising neural network DOI
Zhuo Li, Heng Wu, Lianglun Cheng

и другие.

Digital Signal Processing, Год журнала: 2022, Номер 123, С. 103433 - 103433

Опубликована: Янв. 20, 2022

Язык: Английский

Процитировано

18

From Conventional Approach to Machine Learning and Deep Learning Approach: An Experimental and Comprehensive Review of Image Fusion Techniques DOI
Gaurav Choudhary,

Dinesh Sethi

Archives of Computational Methods in Engineering, Год журнала: 2022, Номер 30(2), С. 1267 - 1304

Опубликована: Окт. 28, 2022

Язык: Английский

Процитировано

18

Infrared polarization and intensity image fusion method based on multi-decomposition LatLRR DOI

Xinlong Liu,

Luping Wang

Infrared Physics & Technology, Год журнала: 2022, Номер 123, С. 104129 - 104129

Опубликована: Март 23, 2022

Язык: Английский

Процитировано

16

A new method for fusing infrared and visible images in low-light environments based on visual perception and attention mechanism DOI

Zhen Pei,

Jinbo Lu, Qian Yu

и другие.

Optics and Lasers in Engineering, Год журнала: 2025, Номер 186, С. 108800 - 108800

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

A low-light image enhancement framework based on hybrid multiscale decomposition and adaptive brightness adjustment model DOI
Yizheng Lang, Yunsheng Qian

Optics & Laser Technology, Год журнала: 2025, Номер 185, С. 112621 - 112621

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0