Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 179 - 187
Опубликована: Янв. 1, 2024
Язык: Английский
Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 179 - 187
Опубликована: Янв. 1, 2024
Язык: Английский
Energy Reports, Год журнала: 2024, Номер 12, С. 5044 - 5065
Опубликована: Ноя. 8, 2024
Язык: Английский
Процитировано
6Journal of Building Engineering, Год журнала: 2024, Номер 91, С. 109519 - 109519
Опубликована: Май 13, 2024
Язык: Английский
Процитировано
4Lecture notes in electrical engineering, Год журнала: 2025, Номер unknown, С. 501 - 509
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 389, С. 125734 - 125734
Опубликована: Март 26, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2024, Номер 358, С. 122590 - 122590
Опубликована: Янв. 8, 2024
Язык: Английский
Процитировано
3IEEE Open Journal of the Communications Society, Год журнала: 2023, Номер 4, С. 2913 - 2929
Опубликована: Янв. 1, 2023
With the exponential growth of Internet Things (IoT) devices, IoT has become a transformative technology with applications spanning various domains. It encompasses wide range public and industrial vertical services that come diverse stringent Quality Service (QoS) requirements. Traditional networks often struggle to meet demands these services. As result, introduction 5G Beyond (B5G) holds promise in accommodating through network slicing technology. Network involves partitioning single physical infrastructure into multiple logically isolated ensures dedicated resources each service as per QoS Additionally, Multi-Access Edge Computing (MEC) B5G presents an innovative solution facilitate low-latency communication for However, automatic provisioning management end-to-end (e2e) across multi-domain infrastructures pose significant challenges, including manual error-prone resource configuration, slice template preparation, human intervention. This paper proposes automated Artificial Intelligence (AI) MEC-enabled managing domains specifically tailored Our provides abstraction layer generates templates domain automates deployment based on specified configuration process, reduces intervention, manages complete lifecycle slices. We have conducted several tests our system, creating slices, observed stable performance design, provisioning, isolation, management.
Язык: Английский
Процитировано
7Procedia Computer Science, Год журнала: 2024, Номер 235, С. 1782 - 1792
Опубликована: Янв. 1, 2024
Cloud computing technology provides access on demand to virtualized resources, services, and applications via a distributed network. In cloud data centers effective energy utilization is critical concern in today's technology-driven world. (CDC) are massive facilities that host manage an enormous amount of resources. This article addresses the growing significance energy-intensive nature centers. Due rapid growth computing, it offers on-demand resources globally leads substantial power consumption carbon impact environment. They consume amounts energy, optimizing their essential for reducing operational costs, minimizing environmental impact, ensuring sustainable growth. To combat this, efficient energy-saving approaches using machine learning methods have been researched. ML hold great potential enhancing efficiency CDCs by analysing data, detecting patterns, resource usage. The focus areas include CPU usage prediction, overload finding, underload estimation, selection, migration, relocation VMs attain improve utilization. paper compares results achieved different techniques minimize meet service level agreements (SLA). reduce from 1.6% 88.5% compared benchmark approach mentioned, considering various settings parameters.
Язык: Английский
Процитировано
2Tsinghua Science & Technology, Год журнала: 2024, Номер 30(1), С. 418 - 432
Опубликована: Сен. 11, 2024
Язык: Английский
Процитировано
2Energy Informatics, Год журнала: 2024, Номер 7(1)
Опубликована: Окт. 19, 2024
Energy management in datacenters is a major challenge today due to the environmental and economic impact of increasing energy consumption. Efficient placement virtual machines physical within modern crucial for their effective management. In this context, five algorithms named CNN-GA, CNN-greedy, CNN-ABC, CNN-ACO CNN-PSO, have been developed minimize hosts' power consumption ensure service quality with relatively low response times. We propose comparative approach between other existing methods machine placement. The use optimization combined Convolutional Neural Networks build predictive models were evaluated based on accuracy complexity select optimal solution. necessary data collected using CloudSim Plus simulator, prediction results used allocate according predictions models. main objective research optimize Information Technology resources datacenters. This achieved by seeking policy that minimizes ensures an appropriate level users' needs. It considers imperatives sustainability, performance, availability reducing studied six scenarios under specific constraints determine best model machines' aims address current challenges operational efficiency.
Язык: Английский
Процитировано
0Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 179 - 187
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0