
Composites Science and Technology, Год журнала: 2025, Номер unknown, С. 111127 - 111127
Опубликована: Фев. 1, 2025
Язык: Английский
Composites Science and Technology, Год журнала: 2025, Номер unknown, С. 111127 - 111127
Опубликована: Фев. 1, 2025
Язык: Английский
Sustainable Energy Technologies and Assessments, Год журнала: 2024, Номер 73, С. 104097 - 104097
Опубликована: Ноя. 29, 2024
Язык: Английский
Процитировано
4Computers & Chemical Engineering, Год журнала: 2025, Номер unknown, С. 109049 - 109049
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Materials Circular Economy, Год журнала: 2025, Номер 7(1)
Опубликована: Фев. 22, 2025
Язык: Английский
Процитировано
0Remote Sensing, Год журнала: 2025, Номер 17(5), С. 774 - 774
Опубликована: Фев. 23, 2025
Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely accurate yield prediction essential for ensuring security. There has been a growing use remote sensing, climate data, their combination to estimate yields, but optimal indices time window wheat in arid regions remain unclear. This study was conducted (1) assess performance widely recognized sensing predict at different growth stages, (2) evaluate predictive accuracy machine learning models, (3) determine appropriate period regions, (4) impact parameters on model accuracy. The vegetation indices, due proven effectiveness, used this include Normalized Difference Vegetation Index (NDVI), Enhanced (EVI), Atmospheric Resistance (ARVI). Moreover, four viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), Bagging (BTs), were evaluated region. whole divided into three windows: tillering grain filling (December 15–March), stem elongation (January heading (February–March 15). developed Google Earth Engine (GEE), combining data. results showed that RF with ARVI could accurately maturity stages an R2 > 0.75 error less than 10%. stage identified as regions. While delivered best results, GB EVI slightly lower precision still outperformed other models. It concluded multisource data models promising approach
Язык: Английский
Процитировано
0Composites Science and Technology, Год журнала: 2025, Номер unknown, С. 111127 - 111127
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0