Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106450 - 106450
Опубликована: Май 1, 2025
Язык: Английский
Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106450 - 106450
Опубликована: Май 1, 2025
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120705 - 120705
Опубликована: Апрель 1, 2024
Язык: Английский
Процитировано
9Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105917 - 105917
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
7Journal of Cleaner Production, Год журнала: 2023, Номер 434, С. 139889 - 139889
Опубликована: Ноя. 27, 2023
Язык: Английский
Процитировано
14Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105936 - 105936
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
5Urban Climate, Год журнала: 2023, Номер 49, С. 101570 - 101570
Опубликована: Май 1, 2023
Язык: Английский
Процитировано
13Journal of Advances in Modeling Earth Systems, Год журнала: 2024, Номер 16(6)
Опубликована: Июнь 1, 2024
Abstract Buildings increase the urban surface roughness and reduce near‐surface wind speeds in canopy due to drag effect. Urban heat storage other effects cause warming as well, which decreases boundary layer stability enhances turbulence exchange between upper lower layer. As momentum is transported downward, speed of increases. Quantitative descriptions these mechanisms are still lacking currently. This paper presents high‐resolution numerical simulation results a mega city, Shanghai, China from 2016 2020 using building effect parameterization WRF (WRF‐BEP) with morphological parameters. The dynamic thermal morphology on were separated their quantitative expression functions given. indicate that influence mainly resulting attenuation approximately 50% nearly constant. increases island intensity, could by about 30% under condition strong island. relative contributions change speed. increases, contribution gradually decreases. provides relationship variation morphology, well intensity.
Язык: Английский
Процитировано
4Land, Год журнала: 2024, Номер 13(12), С. 2176 - 2176
Опубликована: Дек. 13, 2024
In recent years, the intensification of urban heat island (UHI) effect has become a significant concern as urbanization accelerates. This survey comprehensively explores current status surface UHI research, emphasizing role land use and cover changes (LULC) in environments. We conducted systematic review 8260 journal articles from Web Science database, employing bibliometric analysis keyword co-occurrence using CiteSpace to identify research hotspots trends. Our investigation reveals that vegetation types are two most critical factors influencing intensity. analyze various computational intelligence techniques, including machine learning algorithms, cellular automata, artificial neural networks, used for simulating expansion predicting effects. The study also examines numerical modeling methods, Weather Research Forecasting (WRF) model, while examining application Computational Fluid Dynamics (CFD) microclimate research. Furthermore, we evaluate potential mitigation strategies, considering planning approaches, green infrastructure solutions, high-albedo materials. comprehensive not only highlights relationship between dynamics UHIs but provides direction future intelligence-driven climate studies.
Язык: Английский
Процитировано
4The Science of The Total Environment, Год журнала: 2023, Номер 905, С. 167091 - 167091
Опубликована: Сен. 15, 2023
Язык: Английский
Процитировано
10PLoS ONE, Год журнала: 2025, Номер 20(1), С. e0317659 - e0317659
Опубликована: Янв. 27, 2025
The increasing population density and impervious surface area have exacerbated the urban heat island effect, posing significant challenges to environments sustainable development. Urban spatial morphology is crucial in mitigating effect. This study investigated impact of on land temperature (LST) at township scale. We proposed a six-dimensional factor system describe morphology, comprising Atmospheric Quality, Remote Sensing Indicators, Terrain, Land Use/Land Cover, Building Scale, Socioeconomic Factors. Spatial autocorrelation regression methods were used analyze impact. To this end, township-scale data Linyi City from 2013 2022 collected. results showed that LST are significantly influenced by with strongest correlations found factors use types, landscape metrics, remote sensing indices. global Moran’s I value exceeds 0.7, indicating strong positive correlation. High-High LISA values distributed central western areas, Low-Low northern regions some scattered counties. Geographically Weighted Regression (GWR) model outperforms Error Model (SEM) Ordinary Least Squares (OLS) model, making it more suitable for exploring these relationships. findings aim provide valuable references town planning, resource allocation,
Язык: Английский
Процитировано
0Urban Climate, Год журнала: 2025, Номер 59, С. 102320 - 102320
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
0