Joint Evaluation of Urban Built Environment's Driving Patterns on Urban Heat Island (UHI) and Urban Moisture Island (UMI) DOI
Tao Wu,

Zeyin Chen,

Shiqi Zhou

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106450 - 106450

Опубликована: Май 1, 2025

Язык: Английский

Harnessing urban analytics and machine learning for sustainable urban development: A multidimensional framework for modeling environmental impacts of urbanization in Saudi Arabia DOI
Abdulaziz I. Almulhim, Abdulla ‐ Al Kafy, Md Nahid Ferdous

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120705 - 120705

Опубликована: Апрель 1, 2024

Язык: Английский

Процитировано

9

Green space-building integration for Urban Heat Island mitigation: Insights from Beijing's fifth ring road district DOI
Zhifeng Wu, Yi Zhou, Yin Ren

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105917 - 105917

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

7

Nonlinear causal relationships between urbanization and extreme climate events in China DOI
Qikang Zhao, Liang Gao, Qingyan Meng

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 434, С. 139889 - 139889

Опубликована: Ноя. 27, 2023

Язык: Английский

Процитировано

14

A cross-scale indicator framework for the study of annual stability of land surface temperature in different land uses DOI
Shuyang Zhang, Chao Yuan, Taihan Chen

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105936 - 105936

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5

Mining and modeling the direct and indirect causalities among factors affecting the Urban Heat Island severity using structural machine learned Bayesian networks DOI
Ghiwa Assaf, Xi Hu, Rayan H. Assaad

и другие.

Urban Climate, Год журнала: 2023, Номер 49, С. 101570 - 101570

Опубликована: Май 1, 2023

Язык: Английский

Процитировано

13

Numerical Studies on the Influence of Building Morphology on Urban Canopy Wind Speed DOI Creative Commons
Yong Sun, Ning Zhang, Xiangyu Ao

и другие.

Journal of Advances in Modeling Earth Systems, Год журнала: 2024, Номер 16(6)

Опубликована: Июнь 1, 2024

Abstract Buildings increase the urban surface roughness and reduce near‐surface wind speeds in canopy due to drag effect. Urban heat storage other effects cause warming as well, which decreases boundary layer stability enhances turbulence exchange between upper lower layer. As momentum is transported downward, speed of increases. Quantitative descriptions these mechanisms are still lacking currently. This paper presents high‐resolution numerical simulation results a mega city, Shanghai, China from 2016 2020 using building effect parameterization WRF (WRF‐BEP) with morphological parameters. The dynamic thermal morphology on were separated their quantitative expression functions given. indicate that influence mainly resulting attenuation approximately 50% nearly constant. increases island intensity, could by about 30% under condition strong island. relative contributions change speed. increases, contribution gradually decreases. provides relationship variation morphology, well intensity.

Язык: Английский

Процитировано

4

Research Overview on Urban Heat Islands Driven by Computational Intelligence DOI Creative Commons
Chao Liu, Siyu Lu, Jiawei Tian

и другие.

Land, Год журнала: 2024, Номер 13(12), С. 2176 - 2176

Опубликована: Дек. 13, 2024

In recent years, the intensification of urban heat island (UHI) effect has become a significant concern as urbanization accelerates. This survey comprehensively explores current status surface UHI research, emphasizing role land use and cover changes (LULC) in environments. We conducted systematic review 8260 journal articles from Web Science database, employing bibliometric analysis keyword co-occurrence using CiteSpace to identify research hotspots trends. Our investigation reveals that vegetation types are two most critical factors influencing intensity. analyze various computational intelligence techniques, including machine learning algorithms, cellular automata, artificial neural networks, used for simulating expansion predicting effects. The study also examines numerical modeling methods, Weather Research Forecasting (WRF) model, while examining application Computational Fluid Dynamics (CFD) microclimate research. Furthermore, we evaluate potential mitigation strategies, considering planning approaches, green infrastructure solutions, high-albedo materials. comprehensive not only highlights relationship between dynamics UHIs but provides direction future intelligence-driven climate studies.

Язык: Английский

Процитировано

4

Effects of landscape on thermal livability at the community scale based on fine-grained geographic information: A case study of Shenzhen DOI
Yue Liu, Xin Huang, Qiquan Yang

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 905, С. 167091 - 167091

Опубликована: Сен. 15, 2023

Язык: Английский

Процитировано

10

Exploring the impact of urban spatial morphology on land surface temperature: A case study in Linyi City, China DOI Creative Commons

Yongyu Feng,

Huimin Wang, Jing Wu

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(1), С. e0317659 - e0317659

Опубликована: Янв. 27, 2025

The increasing population density and impervious surface area have exacerbated the urban heat island effect, posing significant challenges to environments sustainable development. Urban spatial morphology is crucial in mitigating effect. This study investigated impact of on land temperature (LST) at township scale. We proposed a six-dimensional factor system describe morphology, comprising Atmospheric Quality, Remote Sensing Indicators, Terrain, Land Use/Land Cover, Building Scale, Socioeconomic Factors. Spatial autocorrelation regression methods were used analyze impact. To this end, township-scale data Linyi City from 2013 2022 collected. results showed that LST are significantly influenced by with strongest correlations found factors use types, landscape metrics, remote sensing indices. global Moran’s I value exceeds 0.7, indicating strong positive correlation. High-High LISA values distributed central western areas, Low-Low northern regions some scattered counties. Geographically Weighted Regression (GWR) model outperforms Error Model (SEM) Ordinary Least Squares (OLS) model, making it more suitable for exploring these relationships. findings aim provide valuable references town planning, resource allocation,

Язык: Английский

Процитировано

0

Leveraging machine learning to explore nonlinear associations between urban heat vulnerability and morbidity risk DOI
Jiaming Yang,

Zhaomin Tong,

Jiwei Xu

и другие.

Urban Climate, Год журнала: 2025, Номер 59, С. 102320 - 102320

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

0