
International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер unknown, С. 105129 - 105129
Опубликована: Дек. 1, 2024
Язык: Английский
International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер unknown, С. 105129 - 105129
Опубликована: Дек. 1, 2024
Язык: Английский
Sustainable Cities and Society, Год журнала: 2024, Номер 108, С. 105496 - 105496
Опубликована: Май 5, 2024
Язык: Английский
Процитировано
24International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер 117, С. 105170 - 105170
Опубликована: Янв. 5, 2025
Язык: Английский
Процитировано
4Sustainable Cities and Society, Год журнала: 2024, Номер 108, С. 105508 - 105508
Опубликована: Май 5, 2024
Язык: Английский
Процитировано
15Sustainable Cities and Society, Год журнала: 2024, Номер 112, С. 105619 - 105619
Опубликована: Июль 3, 2024
Язык: Английский
Процитировано
11Applied Sciences, Год журнала: 2025, Номер 15(1), С. 465 - 465
Опубликована: Янв. 6, 2025
Emergency situation awareness during sudden natural disasters presents significant challenges. Traditional methods, characterized by low spatial and temporal resolution as well coarse granularity, often fail to comprehensively capture disaster situations. However, social media platforms, a vital source of sensing, offer potential supplement situational awareness. This paper proposes an innovative framework for based on multimodal data from identify content related typhoon disasters. Integrating text image facilitates near real-time monitoring the public perspective. In this study, Typhoon Haikui (Strong No. 11 2023) was chosen case study validate effectiveness proposed method. We employed ERNIE language processing model complement Deeplab v3+ deep learning semantic segmentation extracting damage information media. A visualization analysis disaster-affected areas performed categorizing types. Additionally, Geodetector used investigate heterogeneity its underlying factors. approach allowed us analyze spatiotemporal patterns evolution, enabling rapid assessment facilitating emergency response efforts. The results show that method significantly enhances effectively identifying different types sensing data.
Язык: Английский
Процитировано
1Automation in Construction, Год журнала: 2025, Номер 174, С. 106151 - 106151
Опубликована: Март 31, 2025
Язык: Английский
Процитировано
1Sustainable Cities and Society, Год журнала: 2024, Номер 106, С. 105362 - 105362
Опубликована: Март 20, 2024
Язык: Английский
Процитировано
8Sustainable Cities and Society, Год журнала: 2024, Номер 107, С. 105440 - 105440
Опубликована: Апрель 12, 2024
Язык: Английский
Процитировано
8Sustainable Cities and Society, Год журнала: 2024, Номер 104, С. 105321 - 105321
Опубликована: Фев. 29, 2024
Язык: Английский
Процитировано
7Water, Год журнала: 2024, Номер 16(17), С. 2476 - 2476
Опубликована: Авг. 30, 2024
In the context of increasing frequency urban flooding disasters caused by extreme weather, accurate and timely identification monitoring flood risks have become increasingly important. This article begins with a bibliometric analysis literature on identification, revealing that since 2017, this area has global research hotspot. Subsequently, it presents systematic review current mainstream technologies, drawing from both traditional emerging data sources, which are categorized into sensor-based (including contact non-contact sensors) big data-based social media surveillance camera data). By analyzing advantages disadvantages each technology their different focuses, paper points out largely emphasizes more “intelligent” technologies. However, these technologies still certain limitations, sensor techniques retain significant in practical applications. Therefore, future risk should focus integrating multiple fully leveraging strengths sources to achieve real-time flooding.
Язык: Английский
Процитировано
5