Impact of artificial intelligence and knowledge management on proactive green innovation: the moderating role of trust and sustainability DOI
Amir A. Abdulmuhsin,

Hosni Shareif Hussein,

Hadi Al‐Abrrow

и другие.

Asia-Pacific Journal of Business Administration, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 25, 2024

Purpose In this research, we seek to understand the effects of artificial intelligence (AI) and knowledge management (KM) processes in enhancing proactive green innovation (PGI) within oil gas organizations. It also aims investigate moderator role trust sustainability these relationships. Design/methodology/approach This paper employs a quantitative analysis. Surveys have been gathered from middle-line managers twenty-four government organizations evaluate perceptions towards AI, KM processes, trust, measures toward innovation. Analytical statistical tools that were employed study, including structural equation modeling with SmartPLSv3.9, used analyze data examine measurement models study. Findings The study results reveal significant positive impact AI utilization, PGI Furthermore, turn out be viable moderators affecting, influencing strength direction particular, higher levels more substantial commitments enhance on outcomes. Practical implications Understanding KM, offers valuable insights for organizational leaders policymakers seeking promote industry. Thus, can increase efficiency sustainable product development, process improvement environmental by using robust technologies effective systems. fostering among stakeholders embedding principles into culture amplify effectiveness initiatives driving Originality/value extends current assessing effect while accounting as moderators. Utilizing methods nuanced understanding complex interactions between variables, thereby advancing theoretical fields management, behavior. Additionally, identification specific mechanisms contextual factors enriches practical practitioners striving dynamics complexities an AI-driven era.

Язык: Английский

Research on the impact of the integration of digital economy and real economy on enterprise green innovation DOI

Guanglin Sun,

Jiming Fang,

Jinning Li

и другие.

Technological Forecasting and Social Change, Год журнала: 2023, Номер 200, С. 123097 - 123097

Опубликована: Дек. 20, 2023

Язык: Английский

Процитировано

82

The pathway to curb greenwashing in sustainable growth: The role of artificial intelligence DOI
Dongyang Zhang

Energy Economics, Год журнала: 2024, Номер 133, С. 107562 - 107562

Опубликована: Апрель 16, 2024

Язык: Английский

Процитировано

43

Artificial intelligence, green technological progress, energy conservation, and carbon emission reduction in China: An examination based on dynamic spatial Durbin modeling DOI
Wangni Zhou, Yuqin Zhang, Xuekun Li

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 446, С. 141142 - 141142

Опубликована: Фев. 6, 2024

Язык: Английский

Процитировано

41

How does artificial intelligence affect the environmental performance of organizations? The role of green innovation and green culture DOI
Jiabao Lin,

Yanyun Zeng,

Shaowu Wu

и другие.

Information & Management, Год журнала: 2024, Номер 61(2), С. 103924 - 103924

Опубликована: Янв. 29, 2024

Язык: Английский

Процитировано

40

The impact of digital government on corporate green innovation: Evidence from China DOI
Xiaoli Hao,

Erxiang Miao,

Qingyu Sun

и другие.

Technological Forecasting and Social Change, Год журнала: 2024, Номер 206, С. 123570 - 123570

Опубликована: Июль 8, 2024

Язык: Английский

Процитировано

29

Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China DOI

Wenli Zhong,

Liu Yang, Kangyin Dong

и другие.

Energy Economics, Год журнала: 2024, Номер 138, С. 107829 - 107829

Опубликована: Авг. 12, 2024

Язык: Английский

Процитировано

29

The impact of artificial intelligence on green technology cycles in China DOI
Tong Fu, Zhaoxuan Qiu, Xiangyang Yang

и другие.

Technological Forecasting and Social Change, Год журнала: 2024, Номер 209, С. 123821 - 123821

Опубликована: Окт. 13, 2024

Язык: Английский

Процитировано

21

How does digital transformation empower knowledge creation? Evidence from Chinese manufacturing enterprises DOI Creative Commons
Yufen Chen, X. Pan, Pian Liu

и другие.

Journal of Innovation & Knowledge, Год журнала: 2024, Номер 9(2), С. 100481 - 100481

Опубликована: Март 23, 2024

Knowledge creation is the foundation for indigenous innovation in manufacturing enterprises; however, effects of digital transformation on knowledge are still not well understood. Nonaka put forward model creation, which includes four processes: socialization, externalization, combination, and internalization, known as famous SECI model. Based model, this study analyzes processes, using panel data from Chinese listed enterprises 2007 to 2020. The provides several novel findings. First, positively affects all with combination capability being particularly notable. Second, digitalization inputs externalization insignificant but exert a negative impact socialization internalization. Third, heterogeneity analysis reveals that facilitating effect more significant state-owned large enterprises. Moreover, it primarily acts "cherry top," significantly benefiting already have strong capabilities. A low level technology development region where an enterprise located will inhibit role promoting socialization. Furthermore, culture regional environments play positive moderating roles. This contributes further understanding how enterprises' activities.

Язык: Английский

Процитировано

20

Towards green development: The role of intelligent manufacturing in promoting corporate environmental performance DOI

Xiahai Wei,

Feng Jiang, Yu Chen

и другие.

Energy Economics, Год журнала: 2024, Номер 131, С. 107375 - 107375

Опубликована: Фев. 6, 2024

Язык: Английский

Процитировано

18

Sowing the seeds for sustainability: A business model innovation perspective on artificial intelligence in green technology startups DOI Creative Commons
Philip Jorzik, Jerome L. Antonio, Dominik K. Kanbach

и другие.

Technological Forecasting and Social Change, Год журнала: 2024, Номер 208, С. 123653 - 123653

Опубликована: Авг. 24, 2024

In today's data-driven era, ubiquitous concern about environmental issues pushes more startups to engage in business model innovation that promotes environmentally friendly technologies. The goal of these is create technology-based products and services enhance sustainability. this context, artificial intelligence promises be a key instrument create, capture, deliver value. However, the existing literature lacks deep understanding how using AI innovate their models achieve positive impact. Therefore, paper investigates green technology utilize from perspective for We conduct qualitative, exploratory multiple-case study Eisenhardt methodology, based on interview data analyzed qualitative content analysis. derive five predominant manifestations AI-driven identify archetypical connections between dimensions. Further, we establish three overarching associations among cases. doing so, contribute theory practice by providing deeper account attempt maximize impact through AI. results also highlight driven can support society securing sustainable future.

Язык: Английский

Процитировано

18