scCobra allows contrastive cell embedding learning with domain adaptation for single cell data integration and harmonization DOI Creative Commons
Bowen Zhao,

Kailu Song,

Dong‐Qing Wei

и другие.

Communications Biology, Год журнала: 2025, Номер 8(1)

Опубликована: Фев. 13, 2025

Abstract The rapid advancement of single-cell technologies has created an urgent need for effective methods to integrate and harmonize data. Technical biological variations across studies complicate data integration, while conventional tools often struggle with reliance on gene expression distribution assumptions over-correction. Here, we present scCobra, a deep generative neural network designed overcome these challenges through contrastive learning domain adaptation. scCobra effectively mitigates batch effects, minimizes over-correction, ensures biologically meaningful integration without assuming specific distributions. It enables online label transfer datasets allowing continuous new retraining. Additionally, supports effect simulation, advanced multi-omic scalable processing large datasets. By integrating harmonizing from similar studies, expands the available investigating problems, improving cross-study comparability, revealing insights that may be obscured in isolated

Язык: Английский

Methods and applications for single-cell and spatial multi-omics DOI Open Access
Katy Vandereyken, Alejandro Sifrim, Bernard Thienpont

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(8), С. 494 - 515

Опубликована: Март 2, 2023

Язык: Английский

Процитировано

598

The technological landscape and applications of single-cell multi-omics DOI Open Access
Alev Baysoy, Zhiliang Bai, Rahul Satija

и другие.

Nature Reviews Molecular Cell Biology, Год журнала: 2023, Номер 24(10), С. 695 - 713

Опубликована: Июнь 6, 2023

Язык: Английский

Процитировано

438

The emerging landscape of spatial profiling technologies DOI
Jeffrey R. Moffitt, Emma Lundberg, Holger Heyn

и другие.

Nature Reviews Genetics, Год журнала: 2022, Номер 23(12), С. 741 - 759

Опубликована: Июль 20, 2022

Язык: Английский

Процитировано

275

Vascular endothelial cell development and diversity DOI Open Access
Emily Trimm, Kristy Red‐Horse

Nature Reviews Cardiology, Год журнала: 2022, Номер 20(3), С. 197 - 210

Опубликована: Окт. 5, 2022

Язык: Английский

Процитировано

237

Characterizing cis-regulatory elements using single-cell epigenomics DOI
Sebastian Preißl, Kyle J. Gaulton, Bing Ren

и другие.

Nature Reviews Genetics, Год журнала: 2022, Номер 24(1), С. 21 - 43

Опубликована: Июль 15, 2022

Язык: Английский

Процитировано

147

SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data DOI Creative Commons

Sitara Persad,

Zi-Ning Choo,

Christine Dien

и другие.

Nature Biotechnology, Год журнала: 2023, Номер 41(12), С. 1746 - 1757

Опубликована: Март 27, 2023

Abstract Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct states. Here we present aggregation of states (SEACells), an algorithm for identifying metacells overcome the sparsity while retaining heterogeneity obscured by traditional clustering. SEACells outperforms existing algorithms in comprehensive, compact and well-separated both RNA assay transposase-accessible chromatin (ATAC) modalities across datasets with discrete types continuous trajectories. We demonstrate use to improve gene–peak associations, compute ATAC gene scores infer activities critical regulators during differentiation. Metacell-level analysis scales large is particularly well suited patient cohorts, where per-patient provides more robust units integration. our reveal expression dynamics gradual reconfiguration landscape hematopoietic differentiation uniquely identify CD4 T activation associated disease onset severity a Coronavirus Disease 2019 (COVID-19) cohort.

Язык: Английский

Процитировано

107

Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues DOI Creative Commons
Huan Wang, Ruixu Huang,

Jack Nelson

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown

Опубликована: Дек. 8, 2023

Emerging imaging spatial transcriptomics (iST) platforms and coupled analytical methods can recover cell-to-cell interactions, groups of spatially covarying genes, gene signatures associated with pathological features, are thus particularly well-suited for applications in formalin fixed paraffin embedded (FFPE) tissues. Here, we benchmarked the performance three commercial iST on serial sections from tissue microarrays (TMAs) containing 23 tumor normal types both relative technical biological performance. On matched found that 10x Xenium shows higher transcript counts per without sacrificing specificity, but all concord to orthogonal RNA-seq datasets perform resolved cell typing, albeit different false discovery rates, segmentation error frequencies, varying degrees sub-clustering downstream analyses. Taken together, our analyses provide a comprehensive benchmark guide choice method as researchers design studies precious samples this rapidly evolving field.

Язык: Английский

Процитировано

46

Technology-enabled great leap in deciphering plant genomes DOI
Lingjuan Xie, Xiaojiao Gong, Kun Yang

и другие.

Nature Plants, Год журнала: 2024, Номер 10(4), С. 551 - 566

Опубликована: Март 20, 2024

Язык: Английский

Процитировано

32

Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation DOI Creative Commons

Yang Gao,

Jianan Li,

Wenfeng Cheng

и другие.

Cancer Cell, Год журнала: 2024, Номер unknown

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

23

Single-cell transcriptomics for the assessment of cardiac disease DOI Open Access
Antonio M. A. Miranda, Vaibhao Janbandhu, Henrike Maatz

и другие.

Nature Reviews Cardiology, Год журнала: 2022, Номер 20(5), С. 289 - 308

Опубликована: Дек. 20, 2022

Язык: Английский

Процитировано

62