Universal Cell Embeddings: A Foundation Model for Cell Biology DOI Creative Commons
Yanay Rosen, Yusuf Roohani, Ayush Agrawal

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown

Опубликована: Ноя. 29, 2023

Developing a universal representation of cells which encompasses the tremendous molecular diversity cell types within human body and more generally, across species, would be transformative for biology. Recent work using single-cell transcriptomic approaches to create definitions in form atlases has provided necessary data such an endeavor. Here, we present Universal Cell Embedding (UCE) foundation model. UCE was trained on corpus atlas from other species completely self-supervised way without any annotations. offers unified biological latent space that can represent cell, regardless tissue or species. This embedding captures important variation despite presence experimental noise diverse datasets. An aspect UCE's universality is new organism mapped this with no additional labeling, model training fine-tuning. We applied Integrated Mega-scale Atlas, 36 million cells, than 1,000 uniquely named types, hundreds experiments, dozens tissues eight uncovered insights about organization space, leveraged it infer function newly discovered types. exhibits emergent behavior, uncovering biology never explicitly for, as identifying developmental lineages novel not included set. Overall, by enabling every state type, provides valuable tool analysis, annotation hypothesis generation scale single datasets continues grow.

Язык: Английский

Methods and applications for single-cell and spatial multi-omics DOI Open Access
Katy Vandereyken, Alejandro Sifrim, Bernard Thienpont

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(8), С. 494 - 515

Опубликована: Март 2, 2023

Язык: Английский

Процитировано

598

Best practices for single-cell analysis across modalities DOI Open Access
Lukas Heumos, Anna C. Schaar, Christopher Lance

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(8), С. 550 - 572

Опубликована: Март 31, 2023

Язык: Английский

Процитировано

506

Multi-omics single-cell data integration and regulatory inference with graph-linked embedding DOI Creative Commons
Zhi‐Jie Cao, Ge Gao

Nature Biotechnology, Год журнала: 2022, Номер 40(10), С. 1458 - 1466

Опубликована: Май 2, 2022

Despite the emergence of experimental methods for simultaneous measurement multiple omics modalities in single cells, most single-cell datasets include only one modality. A major obstacle integrating data from is that different layers typically have distinct feature spaces. Here, we propose a computational framework called GLUE (graph-linked unified embedding), which bridges gap by modeling regulatory interactions across explicitly. Systematic benchmarking demonstrated more accurate, robust and scalable than state-of-the-art tools heterogeneous multi-omics data. We applied to various challenging tasks, including triple-omics integration, integrative inference human cell atlas construction over millions where was able correct previous annotations. features modular design can be flexibly extended enhanced new analysis tasks. The full package available online at https://github.com/gao-lab/GLUE .

Язык: Английский

Процитировано

310

Spatial components of molecular tissue biology DOI
Giovanni Palla, David S. Fischer, Aviv Regev

и другие.

Nature Biotechnology, Год журнала: 2022, Номер 40(3), С. 308 - 318

Опубликована: Фев. 7, 2022

Язык: Английский

Процитировано

234

A harmonized atlas of mouse spinal cord cell types and their spatial organization DOI Creative Commons
D. Russ, Ryan B. Patterson Cross, Li Li

и другие.

Nature Communications, Год журнала: 2021, Номер 12(1)

Опубликована: Сен. 29, 2021

Abstract Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases mouse spinal cord have been published in recent years but not integrated together. Here, we generate an atlas types based on single-cell transcriptomic data, unifying available datasets into a common reference framework. We report hierarchical structure postnatal relationships, with location providing highest level organization, then neurotransmitter status, family, and finally, dozens refined populations. validate combinatorial marker code for each neuronal map their spatial distributions adult cord. also show complex lineage relationships among Additionally, develop open-source classifier, SeqSeek, to facilitate standardization identification. This work provides view types, gene expression signatures, organization.

Язык: Английский

Процитировано

181

Gene regulatory network inference in the era of single-cell multi-omics DOI
Pau Badia-i-Mompel, Lorna Wessels, Sophia Müller‐Dott

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(11), С. 739 - 754

Опубликована: Июнь 26, 2023

Язык: Английский

Процитировано

179

Single-cell proteomics enabled by next-generation sequencing or mass spectrometry DOI
Hayley M. Bennett, William Stephenson, Christopher M. Rose

и другие.

Nature Methods, Год журнала: 2023, Номер 20(3), С. 363 - 374

Опубликована: Март 1, 2023

Язык: Английский

Процитировано

176

Characterizing cis-regulatory elements using single-cell epigenomics DOI
Sebastian Preißl, Kyle J. Gaulton, Bing Ren

и другие.

Nature Reviews Genetics, Год журнала: 2022, Номер 24(1), С. 21 - 43

Опубликована: Июль 15, 2022

Язык: Английский

Процитировано

147

Single-cell atlases: shared and tissue-specific cell types across human organs DOI
Rasa Elmentaite, Cecilia Domínguez Conde, Lu Yang

и другие.

Nature Reviews Genetics, Год журнала: 2022, Номер 23(7), С. 395 - 410

Опубликована: Фев. 25, 2022

Язык: Английский

Процитировано

129

MultiVI: deep generative model for the integration of multimodal data DOI Creative Commons
Tal Ashuach, Mariano I. Gabitto,

Rohan V. Koodli

и другие.

Nature Methods, Год журнала: 2023, Номер 20(8), С. 1222 - 1231

Опубликована: Июнь 29, 2023

Jointly profiling the transcriptome, chromatin accessibility and other molecular properties of single cells offers a powerful way to study cellular diversity. Here we present MultiVI, probabilistic model analyze such multiomic data leverage it enhance single-modality datasets. MultiVI creates joint representation that allows an analysis all modalities included in input data, even for which one or more are missing. It is available at scvi-tools.org .

Язык: Английский

Процитировано

122