Self-Supervised Learning Improves Accuracy and Data Efficiency for IMU-Based Ground Reaction Force Estimation DOI Creative Commons
Tian Tan, Peter B. Shull, Jennifer L. Hicks

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown

Опубликована: Окт. 29, 2023

Recent deep learning techniques hold promise to enable IMU-driven kinetic assessment; however, they require large extents of ground reaction force (GRF) data serve as labels for supervised model training. We thus propose using existing self-supervised (SSL) leverage IMU datasets pre-train models, which can improve the accuracy and efficiency IMU-based GRF estimation.

Язык: Английский

Digitalization in orthopaedics: a narrative review DOI Creative Commons
Yasmin Youssef,

Deana De Wet,

David Alexander Back

и другие.

Frontiers in Surgery, Год журнала: 2024, Номер 10

Опубликована: Янв. 11, 2024

Advances in technology and digital tools like the Internet of Things (IoT), artificial intelligence (AI), sensors are shaping field orthopaedic surgery on all levels, from patient care to research facilitation logistic processes. Especially COVID-19 pandemic, with associated contact restrictions was an accelerator for development introduction telemedical applications alternatives classical in-person care. Digital already used include support, online video consultations, monitoring patients using wearables, smart devices, surgical navigation, robotic-assisted surgery, forms medical image processing, three-dimensional (3D)-modelling, simulations. In addition that immersive technologies virtual, augmented, mixed reality increasingly training but also rehabilitative settings. advances can therefore increase accessibility, efficiency capabilities services facilitate more data-driven, personalized care, strengthening self-responsibility supporting interdisciplinary healthcare providers offer optimal their patients.

Язык: Английский

Процитировано

8

Digitalization in orthopedics DOI
Julian Scherer,

Deana De Wet,

Yasmin Youssef

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 275 - 290

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations DOI Creative Commons
Marlies Nitschke, Eva Dorschky, Sigrid Leyendecker

и другие.

Frontiers in Bioengineering and Biotechnology, Год журнала: 2024, Номер 12

Опубликована: Апрель 2, 2024

Portable measurement systems using inertial sensors enable motion capture outside the lab, facilitating longitudinal and large-scale studies in natural environments. However, estimating 3D kinematics kinetics from data for a comprehensive biomechanical movement analysis is still challenging. Machine learning models or stepwise approaches performing Kalman filtering, inverse kinematics, dynamics can lead to inconsistencies between kinetics. We investigated reconstruction of arbitrary running motions sensor optimal control simulations full-body musculoskeletal models. To evaluate feasibility proposed method, we used marker tracking created optical as reference computing virtual such that desired solution was known exactly. generated by formulating problems tracked acceleration angular velocity while minimizing effort without requiring task constraint an initial state. approach, reconstructed three trials each straight running, curved v-cut 10 participants. compared estimated signals variables simulations. The closely, resulting low mean root squared deviations pelvis translation (≤20.2 mm), angles (≤1.8 deg), ground reaction forces (≤1.1 BW%), joint moments (≤0.1 BWBH%), muscle (≤5.4 BW%) high coefficients multiple correlation all (0.99) . Accordingly, our results showed could reconstruct individual motions. led mutually dynamically consistent kinetics, which allows researching causal chains, example, analyze anterior cruciate ligament injury prevention. Our work proved approach data. When future with measured data, location alignment on segment must be estimated, soft-tissue artifacts are potential error sources. Nevertheless, demonstrated simulation highly promising analysis.

Язык: Английский

Процитировано

6

Preventing Sports Injuries: A Review of Evidence-Based Strategies and Interventions DOI Creative Commons
Argin A. Gulanes, Stephen A. Fadare, Joy E. Pepania

и другие.

Salud Ciencia y Tecnología, Год журнала: 2024, Номер 4, С. 951 - 951

Опубликована: Янв. 1, 2024

Athletes' inability to return and pursue their athletics is primarily motivated by fear of re-injury. Sports injuries have been recognized as a significant deterrent further physical exercise. This study aims evaluate evidence-based strategies interventions for preventing sports-related injuries, including pre-participation screenings, suitable training programs, equipment modifications, injury prevention programs. A systematic review meta-analysis (PRISMA) approach was used gather, choose, analyze publications on sports injuries. Scopus, Web Science (WoS), ProQuest, Springer Link were databases the study. The inclusion exclusion criteria apply study.Adequate treatment aids in recovery injured parts body future Athletes, coaches, medicine specialists can collaborate reduce frequency severity encouraging safer longer-lasting activity participation. Policies that likelihood players sustain be achieved implementing these into competition protocols

Язык: Английский

Процитировано

5

Functional Return-to-Sport Testing Demonstrates Inconsistency in Predicting Short-Term Outcomes Following Anterior Cruciate Ligament Reconstruction: A Systematic Review DOI
Vikram S. Gill, Sailesh V. Tummala, Georgia Sullivan

и другие.

Arthroscopy The Journal of Arthroscopic and Related Surgery, Год журнала: 2024, Номер 40(7), С. 2135 - 2151.e2

Опубликована: Янв. 11, 2024

Язык: Английский

Процитировано

4

IMU Usage in Sports Science: Advancements in Biomechanical Assessment for ACL Injuries DOI

A Hernandez Guzman,

Gerardo Fumagal,

P Rodríguez

и другие.

IFMBE proceedings, Год журнала: 2025, Номер unknown, С. 153 - 168

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Advances in Digital Orthopedics Research DOI

新赢 裴

Hans Journal of Biomedicine, Год журнала: 2025, Номер 15(01), С. 244 - 257

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

The technology of wearable flexible textile-based strain sensors for monitoring multiple human motions: construction, patterning and performance DOI Creative Commons

Liza Liza,

Md Homaune Kabir,

Liang Jiang

и другие.

Sensors & Diagnostics, Год журнала: 2023, Номер 2(6), С. 1414 - 1436

Опубликована: Янв. 1, 2023

This paper discusses the development of wearable flexible textile-based strain sensors for monitoring multiple human motions.

Язык: Английский

Процитировано

9

Self-Supervised Learning Improves Accuracy and Data Efficiency for IMU-Based Ground Reaction Force Estimation DOI
Tian Tan, Peter B. Shull, Jennifer L. Hicks

и другие.

IEEE Transactions on Biomedical Engineering, Год журнала: 2024, Номер 71(7), С. 2095 - 2104

Опубликована: Фев. 5, 2024

Recent deep learning techniques hold promise to enable IMU-driven kinetic assessment; however, they require large extents of ground reaction force (GRF) data serve as labels for supervised model training. We thus propose using existing self-supervised (SSL) leverage IMU datasets pre-train models, which can improve the accuracy and efficiency IMU-based GRF estimation.

Язык: Английский

Процитировано

3

Vitrification cryopreservation of ligaments based on zwitterionic betaine DOI
Liming Zhang, Xinmeng Liu, Haoyue Li

и другие.

Chinese Journal of Chemical Engineering, Год журнала: 2024, Номер 72, С. 1 - 9

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

1