Accelerating the Discovery of Abiotic Vesicles with AI-Guided Automated Experimentation DOI
M. C. Ekosso, Hao Liu,

Avery Glagovich

и другие.

Langmuir, Год журнала: 2024, Номер 41(1), С. 858 - 867

Опубликована: Дек. 30, 2024

The first protocells are speculated to have arisen from the self-assembly of simple abiotic carboxylic acids, alcohols, and other amphiphiles into vesicles. To study complex process vesicle formation, we combined laboratory automation with AI-guided experimentation accelerate discovery specific compositions underlying principles governing formation. Using a low-cost commercial liquid handling robot, automated experimental procedures, enabling high-throughput testing various reaction conditions for mixtures seven (7) amphiphiles. Multitemplate multiscale template matching (MMTM) was used automate confocal microscopy image analysis, us quantify formation without tedious manual counting. results were create Gaussian surrogate model, then active learning iteratively direct experiments reduce model uncertainty. Mixtures containing primarily trimethyl decylammonium decylsulfate in equal amounts formed vesicles at submillimolar critical concentrations, more than 20% glycerol monodecanoate prevented forming even high total amphiphile concentrations.

Язык: Английский

Self-Driving Laboratories for Chemistry and Materials Science DOI Creative Commons
Gary Tom, Stefan P. Schmid, Sterling G. Baird

и другие.

Chemical Reviews, Год журнала: 2024, Номер 124(16), С. 9633 - 9732

Опубликована: Авг. 13, 2024

Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through automation experimental workflows, along with autonomous planning, SDLs hold potential to greatly accelerate research in chemistry and materials discovery. This review provides in-depth analysis state-of-the-art SDL technology, its applications across various disciplines, implications for industry. additionally overview enabling technologies SDLs, including their hardware, software, integration laboratory infrastructure. Most importantly, this explores diverse range domains where have made significant contributions, from drug discovery science genomics chemistry. We provide a comprehensive existing real-world examples different levels automation, challenges limitations associated each domain.

Язык: Английский

Процитировано

40

Autonomous chemistry: Navigating self-driving labs in chemical and material sciences DOI

Oliver Bayley,

Elia Savino,

Aidan Slattery

и другие.

Matter, Год журнала: 2024, Номер 7(7), С. 2382 - 2398

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

9

Artificial Intelligence Meets Laboratory Automation in Discovery and Synthesis of Metal–Organic Frameworks: A Review DOI
Yiming Zhao,

Yongjia Zhao,

Jian Wang

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2025, Номер 64(9), С. 4637 - 4668

Опубликована: Фев. 24, 2025

This review discusses the transformative impact of convergence artificial intelligence (AI) and laboratory automation on discovery synthesis metal–organic frameworks (MOFs). MOFs, known for their tunable structures extensive applications in fields such as energy storage, drug delivery, environmental remediation, pose significant challenges due to complex processes high structural diversity. Laboratory has streamlined repetitive tasks, enabled high-throughput screening reaction conditions, accelerated optimization protocols. The integration AI, particularly Transformers large language models (LLMs), further revolutionized MOF research by analyzing massive data sets, predicting material properties, guiding experimental design. emergence self-driving laboratories (SDLs), where AI-driven decision-making is coupled with automated experimentation, represents next frontier research. While remain fully realizing potential this synergistic approach, AI heralds a new era efficiency innovation engineering materials.

Язык: Английский

Процитировано

1

Autonomous laboratories for accelerated materials discovery: a community survey and practical insights DOI Creative Commons
Linda Hung,

Joyce A. Yager,

Danielle R. Monteverde

и другие.

Digital Discovery, Год журнала: 2024, Номер 3(7), С. 1273 - 1279

Опубликована: Янв. 1, 2024

We share the results of a survey on automation and autonomy in materials science labs, which highlight variety researcher challenges motivations. also propose framework for levels laboratory from L0 to L5.

Язык: Английский

Процитировано

4

Automation and Machine Learning for Accelerated Polymer Characterization and Development: Past, Potential, and a Path Forward DOI
Peter A. Beaucage, Duncan R. Sutherland, Tyler B. Martin

и другие.

Macromolecules, Год журнала: 2024, Номер unknown

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

4

Archerfish: a retrofitted 3D printer for high-throughput combinatorial experimentation via continuous printing DOI Creative Commons
Alexander E. Siemenn, Basita Das, Eunice Aissi

и другие.

Digital Discovery, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Archerfish is a low-cost, high-throughput tool for combinatorial materials research. Retrofitted with in situ mixing, prints 250 unique compositions per min—a 100× acceleration factor—for aqueous, nanoparticle, and crystalline materials.

Язык: Английский

Процитировано

0

Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies DOI Creative Commons

Justin P. Edaugal,

Difan Zhang, Dupeng Liu

и другие.

Chem & Bio Engineering, Год журнала: 2025, Номер 2(4), С. 210 - 228

Опубликована: Март 5, 2025

As the chemical industry shifts toward sustainable practices, there is a growing initiative to replace conventional fossil-derived solvents with environmentally friendly alternatives such as ionic liquids (ILs) and deep eutectic (DESs). Artificial intelligence (AI) plays key role in discovery design of novel development green processes. This review explores latest advancements AI-assisted solvent screening specific focus on machine learning (ML) models for physicochemical property prediction separation process design. Additionally, this paper highlights recent progress automated high-throughput (HT) platforms screening. Finally, discusses challenges prospects ML-driven HT strategies optimization. To end, provides insights advance future

Язык: Английский

Процитировано

0

The Implementation and Impact of Chemical High-Throughput Experimentation at AstraZeneca DOI
James J. Douglas, Andrew D. Campbell, David Buttar

и другие.

ACS Catalysis, Год журнала: 2025, Номер unknown, С. 5229 - 5256

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

Research Trend Analysis in the Field of Self-Driving Labs Using Network Analysis and Topic Modeling DOI Creative Commons

Woojun Jung,

Insung Hwang,

Keuntae Cho

и другие.

Systems, Год журнала: 2025, Номер 13(4), С. 253 - 253

Опубликована: Апрель 3, 2025

A self-driving lab (SDL) system that automates experimental design, data collection, and analysis using robotics artificial intelligence (AI) technologies. Its significance has grown substantially in recent years. This study analyzes the overall SDL research trends, examines changes specific topics, visualizes relational structure between authors to identify key contributors, extracts major themes from extensive texts highlight essential content. To achieve these objectives, trend analysis, network topic modeling were conducted on 352 papers collected Web of Science 2004 2023. ensure validity results, a correlation matrix was also performed. The results revealed three findings. First, surged since 2019, driven by advancements AI technologies, reflecting heightened activity this field. Second, modern scientific is advancing with focus data-driven approaches, applications, optimization through utilization SDLs. Third, exhibits interdisciplinary convergence, encompassing material optimization, biological processes, predictive algorithms. underscores growing importance SDLs as tool across diverse academic disciplines provides practical insights into sustainable future directions strategic approaches.

Язык: Английский

Процитировано

0

Development of an Open-Source 3D-Printed Material Synthesis Robot FLUID: Hardware and Software Blueprints for Accessible Automation in Materials Science DOI
Micke Kuwahara, Yoshiki Hasukawa, Fernando García-Escobar

и другие.

ACS Applied Engineering Materials, Год журнала: 2025, Номер unknown

Опубликована: Апрель 8, 2025

Язык: Английский

Процитировано

0