Data Science Guiding Analysis of Organic Reaction Mechanism and Prediction DOI Open Access
Giovanna S. Tâmega,

Mateus Oliveira Costa,

Ariel de Araujo Pereira

и другие.

The Chemical Record, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 5, 2024

Abstract Advancements in synthetic organic chemistry are closely related to understanding substrate and catalyst reactivities through detailed mechanistic studies. Traditional investigations labor‐intensive rely on experimental kinetic, thermodynamic, spectroscopic data. Linear free energy relationships (LFERs), exemplified by Hammett relationships, have long facilitated reactivity prediction despite their inherent limitations when using constants or incorporating comprehensive Data‐driven modeling, which integrates cheminformatics with machine learning, offers powerful tools for predicting interpreting mechanisms effectively handling complex multiparameter strategies. This review explores selected examples of data‐driven strategies investigating reaction mechanisms. It highlights the evolution application computational descriptors inference.

Язык: Английский

Applying statistical modeling strategies to sparse datasets in synthetic chemistry DOI Creative Commons
Brittany C. Haas, Dipannita Kalyani, Matthew S. Sigman

и другие.

Science Advances, Год журнала: 2025, Номер 11(1)

Опубликована: Янв. 1, 2025

The application of statistical modeling in organic chemistry is emerging as a standard practice for probing structure-activity relationships and predictive tool many optimization objectives. This review aimed tutorial those entering the area chemistry. We provide case studies to highlight considerations approaches that can be used successfully analyze datasets low data regimes, common situation encountered given experimental demands Statistical hinges on (what being modeled), descriptors (how are represented), algorithms modeled). Herein, we focus how various reaction outputs (e.g., yield, rate, selectivity, solubility, stability, turnover number) structures binned, heavily skewed, distributed) influence choice algorithm constructing chemically insightful models.

Язык: Английский

Процитировано

3

Calculating the Precision of Student-Generated Datasets Using RStudio DOI
Joseph Chiarelli, Melissa A. St. Hilaire, Brandi L. Baldock

и другие.

Journal of Chemical Education, Год журнала: 2025, Номер unknown

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

1

Recommending reaction conditions with label ranking DOI Creative Commons
Eunjae Shim, Ambuj Tewari, Tim Cernak

и другие.

Chemical Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Label ranking is introduced as a conceptually new means for prioritizing experiments. Their simplicity, ease of application, and the use aggregation facilitate their ability to make accurate predictions with small datasets.

Язык: Английский

Процитировано

1

Transfer learning across different photocatalytic organic reactions DOI Creative Commons
Naoki Noto,

Ryuga Kunisada,

Tabea Rohlfs

и другие.

Nature Communications, Год журнала: 2025, Номер 16(1)

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

1

EnTdecker − A Machine Learning-Based Platform for Guiding Substrate Discovery in Energy Transfer Catalysis DOI
Leon Schlosser,

Debanjan Rana,

Philipp M. Pflüger

и другие.

Journal of the American Chemical Society, Год журнала: 2024, Номер 146(19), С. 13266 - 13275

Опубликована: Май 2, 2024

Due to the magnitude of chemical space, discovery novel substrates in energy transfer (EnT) catalysis remains a daunting task. Experimental and computational strategies identify compounds that successfully undergo EnT-mediated reactions are limited by their time cost efficiency. To accelerate process EnT catalysis, we herein present EnTdecker platform, which facilitates large-scale virtual screening potential using machine-learning (ML) based predictions excited state properties. achieve this, data set is created containing more than 34,000 molecules aiming cover vast fraction synthetically relevant compound space for catalysis. Using this predictive models trained, aptitude an in-lab application demonstrated rediscovering successful from literature as well experimental validation through luminescence-based screening. By reducing effort needed obtain properties, platform represents tool efficiently guide substrate selection increase success rate Moreover, easy-to-use web application, made publicly accessible under entdecker.uni-muenster.de.

Язык: Английский

Процитировано

9

Accelerating the Development of Sustainable Catalytic Processes through Data Science DOI
Jason M. Stevens, Jacob M. Ganley, Matthew J. Goldfogel

и другие.

Organic Process Research & Development, Год журнала: 2025, Номер unknown

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

1

Multi‐Threshold Analysis for Chemical Space Mapping of Ni‐Catalyzed Suzuki‐Miyaura Couplings DOI

Austin LeSueur,

Nari Tao,

Abigail G. Doyle

и другие.

European Journal of Organic Chemistry, Год журнала: 2024, Номер unknown

Опубликована: Сен. 11, 2024

Abstract A key challenge in synthetic chemistry is the selection of high‐performing ligands for cross‐coupling reactions. To address this challenge, work presents a classification workflow to identify physicochemical descriptors that bin monophosphine as active or inactive Ni‐catalyzed Suzuki‐Miyaura coupling Using five previously published high‐throughput experimentation datasets training, we found binary classifier using phosphine's minimum buried volume and Boltzmann‐averaged electrostatic potential most effective at distinguishing high low‐yielding ligands. Experimental validations are also presented. two from represent chemical space leads more predictive guide structure‐reactivity relationships compared with classic representations.

Язык: Английский

Процитировано

5

COBRA web application to benchmark linear regression models for catalyst optimization with few-entry datasets DOI Creative Commons
Zhen Cao, Laura Falivene, Albert Poater

и другие.

Cell Reports Physical Science, Год журнала: 2024, Номер unknown, С. 102348 - 102348

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

5

Photocatalyzed Azidofunctionalization of Alkenes via Radical‐Polar Crossover DOI Open Access
Pierre Palamini, Alexandre A. Schoepfer, Jérôme Waser

и другие.

Angewandte Chemie International Edition, Год журнала: 2025, Номер unknown

Опубликована: Янв. 2, 2025

The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range alkenes, including vinyl arenes, enamides, enol ethers, sulfides, dehydroamino esters, were regioselectively functionalized with an azide nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric oximes, phenols. method led to more efficient synthesis 1,2-azidofunctionalized pharmaceutical intermediates when compared previous approaches, resulting in both reduction step count increase overall yield. scope limitations these transformations further investigated through standard unbiased selection 15 substrate combinations out 1,175,658 possible clustering technique.

Язык: Английский

Процитировано

0

Photocatalyzed Azidofunctionalization of Alkenes via Radical‐Polar Crossover DOI Open Access
Pierre Palamini, Alexandre A. Schoepfer, Jérôme Waser

и другие.

Angewandte Chemie, Год журнала: 2025, Номер unknown

Опубликована: Янв. 2, 2025

Abstract The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical‐polar crossover strategy. A broad range alkenes, including vinyl arenes, enamides, enol ethers, sulfides, dehydroamino esters, were regioselectively functionalized with an azide nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric oximes, phenols. method led to more efficient synthesis 1,2‐azidofunctionalized pharmaceutical intermediates when compared previous approaches, resulting in both reduction step count increase overall yield. scope limitations these transformations further investigated through standard unbiased selection 15 substrate combinations out 1,175,658 possible clustering technique.

Язык: Английский

Процитировано

0