Polymer informatics: Current status and critical next steps DOI Creative Commons
Lihua Chen, Ghanshyam Pilania, Rohit Batra

и другие.

Materials Science and Engineering R Reports, Год журнала: 2020, Номер 144, С. 100595 - 100595

Опубликована: Дек. 26, 2020

Язык: Английский

Transfer Learning for Drug Discovery DOI
Chenjing Cai, Shiwei Wang, Youjun Xu

и другие.

Journal of Medicinal Chemistry, Год журнала: 2020, Номер 63(16), С. 8683 - 8694

Опубликована: Июль 16, 2020

The data sets available to train models for in silico drug discovery efforts are often small. Indeed, the sparse availability of labeled is a major barrier artificial-intelligence-assisted discovery. One solution this problem develop algorithms that can cope with relatively heterogeneous and scarce data. Transfer learning type machine leverage existing, generalizable knowledge from other related tasks enable separate task small set Deep transfer most commonly used field This Perspective provides an overview applications date. Furthermore, it outlooks on future development

Язык: Английский

Процитировано

279

The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis DOI Creative Commons
R. Ann Sheldon, Dean Brady, Moira L. Bode

и другие.

Chemical Science, Год журнала: 2020, Номер 11(10), С. 2587 - 2605

Опубликована: Янв. 1, 2020

Enzymes are excellent catalysts that increasingly being used in industry and academia. This Perspective provides a general practical guide to enzymes their synthetic potential, primarily aimed at organic chemists.

Язык: Английский

Процитировано

261

The rise of self-driving labs in chemical and materials sciences DOI Open Access
Milad Abolhasani, Eugenia Kumacheva

Nature Synthesis, Год журнала: 2023, Номер 2(6), С. 483 - 492

Опубликована: Янв. 30, 2023

Язык: Английский

Процитировано

259

Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot DOI
Robert W. Epps, Michael Bowen, Amanda A. Volk

и другие.

Advanced Materials, Год журнала: 2020, Номер 32(30)

Опубликована: Июнь 4, 2020

Abstract The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one the most complex challenges modern colloidal science, current strategies often fail to meet demands these combinatorially large systems. In response, an Artificial Chemist is presented: integration machine‐learning‐based experiment selection high‐efficiency autonomous flow chemistry. With self‐driving Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in are autonomously synthesized, their yield composition polydispersity at target bandgaps, spanning 1.9 2.9 eV, simultaneously tuned. Utilizing eleven precision‐tailored QD compositions obtained without any prior knowledge, within 30 h, using less than 210 mL total starting solutions, user experiments. Using knowledge generated from studies, pre‐trained use a new batch precursors further accelerate synthetic path discovery compositions, by least twofold. knowledge‐transfer strategy enhances optoelectronic properties in‐flow synthesized QDs (within same resources as no‐prior‐knowledge experiments) mitigates issues batch‐to‐batch precursor variability, resulting averaging 1 meV peak emission energy.

Язык: Английский

Процитировано

258

Autonomous experimentation systems for materials development: A community perspective DOI Creative Commons
Eric A. Stach, Brian DeCost, A. Gilad Kusne

и другие.

Matter, Год журнала: 2021, Номер 4(9), С. 2702 - 2726

Опубликована: Июль 26, 2021

Язык: Английский

Процитировано

258

Autonomous chemical research with large language models DOI Creative Commons
Daniil A. Boiko,

Robert MacKnight,

Ben Kline

и другие.

Nature, Год журнала: 2023, Номер 624(7992), С. 570 - 578

Опубликована: Дек. 20, 2023

Transformer-based large language models are making significant strides in various fields, such as natural processing

Язык: Английский

Процитировано

258

Emerging materials intelligence ecosystems propelled by machine learning DOI
Rohit Batra, Le Song, Rampi Ramprasad

и другие.

Nature Reviews Materials, Год журнала: 2020, Номер 6(8), С. 655 - 678

Опубликована: Ноя. 9, 2020

Язык: Английский

Процитировано

254

AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning DOI Creative Commons
Samuel Genheden, Amol Thakkar, Veronika Chadimová

и другие.

Journal of Cheminformatics, Год журнала: 2020, Номер 12(1)

Опубликована: Ноя. 17, 2020

We present the open-source AiZynthFinder software that can be readily used in retrosynthetic planning. The algorithm is based on a Monte Carlo tree search recursively breaks down molecule to purchasable precursors. guided by an artificial neural network policy suggests possible precursors utilizing library of known reaction templates. fast and typically find solution less than 10 s perform complete 1 min. Moreover, development code was range engineering principles such as automatic testing, system design continuous integration leading robust with high maintainability. Finally, well documented make it suitable for beginners. available at http://www.github.com/MolecularAI/aizynthfinder .

Язык: Английский

Процитировано

231

Machine learning the ropes: principles, applications and directions in synthetic chemistry DOI
Felix Strieth‐Kalthoff, Frederik Sandfort, Marwin Segler

и другие.

Chemical Society Reviews, Год журнала: 2020, Номер 49(17), С. 6154 - 6168

Опубликована: Янв. 1, 2020

Chemists go ML! This tutorial review provides easy access to the fundamentals of machine learning from a synthetic chemist's perspective. Its diverse applications for molecular design, synthesis planning, or reactivity prediction are summarized.

Язык: Английский

Процитировано

226

Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet DOI Creative Commons
Andreas Bender, Isidro Cortés‐Ciriano

Drug Discovery Today, Год журнала: 2020, Номер 26(2), С. 511 - 524

Опубликована: Дек. 18, 2020

Although artificial intelligence (AI) has had a profound impact on areas such as image recognition, comparable advances in drug discovery are rare. This article quantifies the stages of which improvements time taken, success rate or affordability will have most overall bringing new drugs to market. Changes clinical rates improving discovery; other words, quality decisions regarding compound take forward (and how conduct trials) more important than speed cost. current AI focus make given compound, question make, using efficacy and safety-related end points, received significantly less attention. As consequence, proxy measures available data cannot fully utilize potential discovery, particular when it comes safety vivo. Thus, addressing questions generate points model be key clinically relevant decision-making future.

Язык: Английский

Процитировано

226