Київський економічний науковий журнал,
Год журнала:
2025,
Номер
8, С. 45 - 51
Опубликована: Март 7, 2025
Комунікаційна
політика
брендів
у
сфері
соціальних
мереж,
як
стратегічний
напрям
онлайн-бізнесу,
динамічно
розвивається,
що
проявляється
створенні
нових
форматів
цифрового
промоконтенту
із
використанням
інструментів
штучного
інтелекту.
У
статті
розроблено
методологію
проєктування
системи
інтелекту
для
генерації
рекламного
відеоконтенту
з
метою
просування
товарів
і
послуг
цифровому
середовищі
мереж.
Доведено
доцільність
застосування
моделей
інтелекту(ШІ)
створення
рекламних
відеороликів,
дозволяє
знизити
собівартість
відеопродукції
та
скоротити
час
на
її
створення.
Крім
економії
ресурсів,
гнучкості
алгоритмів
дозволяють
швидко
адаптувати
відеоматеріали
під
різні
платформи
аудиторії,
реалізувати
персоналізований
підхід
до
контенту,
в
свою
чергу
може
дозволити
підвищити
ефективність
кампаній.
Висвітлено
оптимальні
методи
написання
інструкцій
LLM
кожному
етапі
промоційного
відео.
В
більшості
випадків
запитів
або
промптів
здійснюється
застосуванням
нейромережі
chatGPT.
Представлено
алгоритм
детальним
описом
кожного
етапу,
зокрема:
пошуку
креативних
ідей,
сценарію,
формування
набору
кадрів
відео
шляхом
фотореалістичних
зображень,
анімації
відеоконтенту,
музичного
супроводу
дубляжу,
вдосконалення
якості
відеопродукту
за
допомогою
ретушування
апскейлінгу,
а
також
синхронізації
всіх
компонентів
відеоролика
фінальному
монтажу.
Визначено
основі
методів
порівняльного
аналізу
генеративні
інструменти
етапу
ролика.
Для
ідей
сценарію
найефективнішою
виявилася
нейромережа
Claude
AI.
Формування
зображень
найкраще
реалізується
ChatGPT.
Серед
графічних
генеративних
нейромереж
лідером
стала
Midjourney,
тоді
серед
відеогенеративних
найвищі
результати
продемонстрували
Runway
Kling.
покращення
оптимальними
рішеннями
стали
Magnific
AI
Freepik
Завершальний
етап
–
монтаж
найефективніше
CapCut.
British Journal of Biomedical Science,
Год журнала:
2025,
Номер
81
Опубликована: Янв. 9, 2025
Generative
Artificial
Intelligence
(GenAI)
is
rapidly
transforming
the
landscape
of
higher
education,
offering
novel
opportunities
for
personalised
learning
and
innovative
assessment
methods.
This
paper
explores
dual-edged
nature
GenAI's
integration
into
educational
practices,
focusing
on
both
its
potential
to
enhance
student
engagement
outcomes
significant
challenges
it
poses
academic
integrity
equity.
Through
a
comprehensive
review
current
literature,
we
examine
implications
GenAI
highlighting
need
robust
ethical
frameworks
guide
use.
Our
analysis
framed
within
pedagogical
theories,
including
social
constructivism
competency-based
learning,
importance
balancing
human
expertise
AI
capabilities.
We
also
address
broader
concerns
associated
with
GenAI,
such
as
risks
bias,
digital
divide,
environmental
impact
technologies.
argues
that
while
can
provide
substantial
benefits
in
terms
automation
efficiency,
must
be
managed
care
avoid
undermining
authenticity
work
exacerbating
existing
inequalities.
Finally,
propose
set
recommendations
institutions,
developing
literacy
programmes,
revising
designs
incorporate
critical
thinking
creativity,
establishing
transparent
policies
ensure
fairness
accountability
By
fostering
responsible
approach
education
harness
safeguarding
core
values
inclusive
education.
Education Sciences,
Год журнала:
2025,
Номер
15(2), С. 199 - 199
Опубликована: Фев. 7, 2025
This
study
evaluates
“I
Learn
with
Prompt
Engineering”,
a
self-paced,
self-regulated
elective
course
designed
to
equip
university
students
skills
in
prompt
engineering
effectively
utilize
large
language
models
(LLMs),
foster
self-directed
learning,
and
enhance
academic
English
proficiency
through
generative
AI
applications.
By
integrating
concepts
tools,
the
supports
autonomous
learning
addresses
critical
skill
gaps
market-ready
capabilities.
The
also
examines
EnSmart,
an
AI-driven
tool
powered
by
GPT-4
integrated
into
Canvas
LMS,
which
automates
test
content
generation
grading
delivers
real-time,
human-like
feedback.
Performance
evaluation,
structured
questionnaires,
surveys
were
used
evaluate
course’s
impact
on
prompting
skills,
proficiency,
overall
experiences.
Results
demonstrated
significant
improvements
accessible
patterns
like
“Persona”
proving
highly
effective,
while
advanced
such
as
“Flipped
Interaction”
posed
challenges.
Gains
most
notable
among
lower
initial
though
engagement
practice
time
varied.
Students
valued
EnSmart’s
intuitive
integration
accuracy
but
identified
limitations
question
diversity
adaptability.
high
final
success
rate
that
proper
design
(taking
consideration
Panadero’s
four
dimensions
of
learning)
can
facilitate
successful
learning.
findings
highlight
AI’s
potential
task
automation,
emphasizing
necessity
human
oversight
for
ethical
effective
implementation
education.
European Journal of Innovation Management,
Год журнала:
2024,
Номер
unknown
Опубликована: Июнь 11, 2024
Purpose
Applying
the
Stimulus–Organism–Response
(SOR)
model,
this
study
aims
to
explore
how
AI-driven
stimuli
(e.g.
ChatGPT
adoption
in
entrepreneurship
and
perceived
AI
competencies)
stimulate
individuals’
cognitive
organisms
digital
entrepreneurial
opportunity
exploration
exploitation),
these
individually,
congruently,
incongruently
trigger
their
behavioral
responses
nascent
start-up
activities).
Design/methodology/approach
Utilizing
a
sample
of
1326
MBA
students
Vietnam
with
stratified
sampling
approach,
multiple
linear
regression
polynomial
response
surface
analysis
were
used
test
hypotheses.
Findings
The
findings
reveal
that
competencies
have
positive
significant
impact
on
exploitation,
which
turn,
positively
affects
activities.
Moreover,
also
reports
exploitation
can
be
congruently
combined
each
other
effects
Practical
implications
Some
valuable
recommendations
based
been
provided
for
practitioners
policymakers.
Originality/value
contributes
academic
landscape
by
validating
SOR
model
within
context
entrepreneurship.
It
emphasizes
sequential
processes
stimulus,
responses,
outcomes,
shedding
light
nuanced
landscape.
Educational Psychology Review,
Год журнала:
2024,
Номер
36(1)
Опубликована: Фев. 27, 2024
Abstract
This
perspective
piece
explores
the
transformative
potential
and
associated
challenges
of
large
language
models
(LLMs)
in
education
how
those
might
be
addressed
utilizing
playful
game-based
learning.
While
providing
many
opportunities,
stochastic
elements
incorporated
present
LLMs
process
text,
requires
domain
expertise
for
a
critical
evaluation
responsible
use
generated
output.
Yet,
due
to
their
low
opportunity
cost,
may
pose
some
risk
over-reliance,
potentially
unintendedly
limiting
development
such
expertise.
Education
is
thus
faced
with
challenge
preserving
reliable
while
not
losing
out
on
emergent
opportunities.
To
address
this
challenge,
we
first
propose
approach
focusing
skill
practice
human
judgment.
Drawing
from
learning
research,
then
go
beyond
account
by
reflecting
well-designed
games
foster
willingness
practice,
nurturing
domain-specific
We
finally
give
new
pedagogy
AI
utilize
generating
gamifying
materials,
leveraging
full
human-AI
interaction
education.
Computers and Education Artificial Intelligence,
Год журнала:
2024,
Номер
7, С. 100278 - 100278
Опубликована: Авг. 9, 2024
With
the
widespread
use
of
Generative
AI
in
education,
effectively
utilizing
and
integrating
it
into
teaching
have
become
key
focal
points
challenges
education.
Different
subjects
target
audiences
require
varied
norms
strategies
for
implementing
AI,
such
as
ChatGPT.
These
differences
directly
impact
educational
integration
various
contexts.
To
address
these
disparities
establish
common
ground,
we
propose
concept
ChatGPT
literacy
to
bridge
research
gaps.
In
this
study,
tailor
specifically
language
teachers,
aiming
delineate
essential
competencies
needed
proficiently
ethically
a
learning
tool.
We
theoretical
framework
encompassing
six
fundamental
constructs:
benefits,
limitations,
prompts,
evaluation
(of
responses),
assessment
(assisted
by
ChatGPT),
ethics,
comprehensively
conceptualise
evaluate
literacy.
Drawing
on
both
quantitative
qualitative
survey
data
from
492
teachers
across
41
countries,
validate
proposed
examining
teachers'
practices
associated
with
usage.
Our
analysis
Likert-scale
data,
item
confirmatory
techniques,
confirms
effectiveness
six-construct
defining
addition,
collected
through
open
questions
conducted
thematic
analysis,
demonstrating
that
has
been
integrated
throughout
instructional
cycle,
material
preparation
formative
summative
phases.
findings
significant
implications
range
stakeholders,
including
educators,
learners,
technology
developers,
policymakers,
providing
valuable
insights
inform
decisions
regarding
Ultimately,
our
study
equips
relevant
stakeholders
necessary
responsibly
exploiting
ChatGPT's
potential
other
subject
areas.
International Journal of Innovation Science,
Год журнала:
2024,
Номер
unknown
Опубликована: Июнь 10, 2024
Purpose
This
study
aims
to
integrate
the
Social
Cognitive
Career
Theory
with
of
Planned
Behavior
unravel
intricate
dynamics
how
engaging
ChatGPT
affects
individuals’
digital
entrepreneurial
intention,
underlying
serial
mediation
mechanism
cognitive
and
reasoned
career
process.
Design/methodology/approach
research
use
a
cross-sectional
design,
drawing
on
sample
604
higher
education
students
from
six
universities
in
Vietnam.
Multiple
regression
analyses
were
conducted
test
formulated
hypotheses
after
assessing
reliability
validity
scales
through
Cronbach’s
alpha
confirmatory
factor
analysis.
Findings
The
results
indicate
that
adoption
significantly
increases
perceived
AI
competencies,
opportunity
recognition
self-efficacy.
Digital
self-efficacy
was
found
have
positive
impact
attitudes
toward
entrepreneurship,
which,
turn,
fosters
intention.
thus
poses
indirect
impacts
intention
sequential
pathways
enhanced
attitudes.
Practical
implications
study’s
findings
provide
valuable
recommendations
for
entrepreneurs,
institutions
policymakers.
Originality/value
contributes
entrepreneurship
literature
by
integrating
two
prominent
theoretical
frameworks
elucidate
intentions.
model
expands
understanding
complex
processes
involved,
providing
novel
perspective
role
entrepreneurship.
International Journal of Educational Technology in Higher Education,
Год журнала:
2025,
Номер
22(1)
Опубликована: Фев. 9, 2025
Abstract
This
paper
presents
a
systematic
review
of
the
role
prompt
engineering
during
interactions
with
Generative
Artificial
Intelligence
(GenAI)
in
Higher
Education
(HE)
to
discover
potential
methods
improving
educational
outcomes.
Drawing
on
comprehensive
search
academic
databases
and
relevant
literature,
key
trends,
including
multiple
framework
designs,
are
presented
explored
role,
relevance,
applicability
purposefully
improve
GenAI-generated
responses
higher
education
contexts.
Multiple
experiments
using
variety
frameworks
compared,
contrasted
discussed.
Analysis
reveals
that
well-designed
prompts
have
transform
GenAI
teaching
learning.
Further
findings
show
it
is
important
develop
teach
pragmatic
skills
AI
interaction,
meaningful
engineering,
which
best
managed
through
for
creating
evaluating
applications
aligned
pre-determined
contextual
goals.
The
outlines
some
concepts
educators
should
be
aware
when
incorporating
into
their
practices,
students
necessary
successful
interaction.
Instructors
in
many
colleges
and
universities
are
responsible
for
supporting
their
preservice
teachers'
understanding
of
mathematics
curriculum
to
best
serve
elementary
students'
needs.
As
such,
teachers
taught
how
critically
analyze
materials.
However,
with
the
advent
technologies
like
ChatGPT,
utilizing
artificial
intelligence
(AI)
tools
new
ways
collate
construct
mathematical
curricula.
now,
little
is
known
about
adapt
these
resources
classroom.
an
AI
chatbot,
can
create
a
based
on
user
questions,
which
then
classrooms.
Although
this
chatbot
produce
quick
response,
researchers
have
identified
that
ChatGPT
biased
responses
inaccurate
data.
This
study
evaluates
quality
created
by
ChatGPT's
responses,
adapted
those
resources,
perceptions
using
ChatGPT.
Overall,
tended
high
levels
cognitive
demand
age-inappropriate
text
students.
Despite
formally
teaching
be
critical
majority
adaptations
merely
changed
visual
appeal
alone,
demonstrating
some
overconfidence
abilities
tools.
implies
should
cautious
specific
prompt
engineering
techniques
innovative
tasks.