
Annals of Operations Research, Год журнала: 2023, Номер unknown
Опубликована: Июль 24, 2023
Язык: Английский
Annals of Operations Research, Год журнала: 2023, Номер unknown
Опубликована: Июль 24, 2023
Язык: Английский
Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109780 - 109780
Опубликована: Окт. 18, 2024
Язык: Английский
Процитировано
19Expert Systems with Applications, Год журнала: 2023, Номер 236, С. 121303 - 121303
Опубликована: Авг. 24, 2023
Язык: Английский
Процитировано
27Computers & Industrial Engineering, Год журнала: 2023, Номер 186, С. 109717 - 109717
Опубликована: Окт. 31, 2023
Язык: Английский
Процитировано
10Electronics, Год журнала: 2025, Номер 14(8), С. 1663 - 1663
Опубликована: Апрель 19, 2025
This article aims to review the industrial applications of AI-based intelligent system algorithms in manufacturing sector find latest methods used for sustainability and optimisation. In contrast previous articles that broadly summarised existing methods, this paper specifically emphasises most recent techniques, providing a systematic structured evaluation their practical within sector. The primary objective study is algorithms, including metaheuristics, evolutionary learning-based sector, particularly through lens optimisation workflow production lines, Job Shop Scheduling Problems (JSSPs). It critically evaluates various solving JSSPs, with particular focus on Flexible (FJSPs), more advanced form JSSPs. process consists several intricate operations must be meticulously planned scheduled executed effectively. regard, Production scheduling best possible schedule maximise one or performance parameters. An integral part JSSP both traditional smart manufacturing; however, research focuses concept general, which pertains concerns aim maximising operational efficiency by reducing time costs. A common feature among studies lack consistent effective solution minimise energy consumption, thus accelerating minimal resources.
Язык: Английский
Процитировано
0Annals of Operations Research, Год журнала: 2023, Номер unknown
Опубликована: Июль 4, 2023
Abstract System-wide optimization of distributed manufacturing operations enables process improvement beyond the standalone and individual optimality norms. This study addresses production planning a system consisting three stages: parts (subcomponents), assembly components in Original Equipment Manufacturer (OEM) factories, final products at product manufacturer’s factory. Distributed Three Stage Assembly Permutation Flowshop Scheduling Problems (DTrSAPFSP) models this operational situation; it is most recent development literature scheduling problems, which has seen very limited for possible industrial applications. research introduces highly efficient constructive heuristic to contribute on DTrSAPFSP. Numerical experiments considering comprehensive set parameters are undertaken evaluate performance benchmark algorithms. It shown that N-list-enhanced Constructive Heuristic algorithm performs significantly better than current best-performing new metaheuristics terms both solution quality computational time. can, therefore, be considered competitive future studies computing.
Язык: Английский
Процитировано
5Annals of Operations Research, Год журнала: 2023, Номер unknown
Опубликована: Июль 24, 2023
Язык: Английский
Процитировано
0