International Journal of Machine Learning and Cybernetics, Journal Year: 2025, Volume and Issue: unknown
Published: Feb. 8, 2025
Language: Английский
International Journal of Machine Learning and Cybernetics, Journal Year: 2025, Volume and Issue: unknown
Published: Feb. 8, 2025
Language: Английский
Environmental Research, Journal Year: 2024, Volume and Issue: 261, P. 119722 - 119722
Published: Aug. 2, 2024
Language: Английский
Citations
23Engineering Applications of Artificial Intelligence, Journal Year: 2025, Volume and Issue: 142, P. 109948 - 109948
Published: Jan. 5, 2025
Language: Английский
Citations
4Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)
Published: Jan. 28, 2025
Internet of Things (IoT) is one the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, smart gadgets into environment enables IoT to deepen interactions enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because devices are often built with minimal hardware connected Internet, they highly susceptible different types cyberattacks, presenting significant security problem maintaining secure infrastructure. Conventional techniques have difficulty countering these evolving threats, highlighting need adaptive solutions powered artificial intelligence (AI). This work seeks improve trust in edge integrated study revolves around hybrid framework combines convolutional neural networks (CNN) machine learning (ML) classifying models, like categorical boosting (CatBoost) light gradient-boosting (LightGBM), further optimized through metaheuristics optimizers leveraged performance. A two-leveled architecture was designed manage intricate data, detection classification attacks within networks. thorough analysis utilizing real-world network dataset validates proposed architecture's efficacy identification specific variants malevolent assaults, classic multi-class challenge. Three experiments were executed open public, where top models attained supreme accuracy 99.83% classification. Additionally, explainable AI methods offered valuable supplementary insights model's decision-making supporting future collection efforts enhancing systems.
Language: Английский
Citations
4Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)
Published: Feb. 3, 2025
In the present scenario, Internet of Things (IoT) and edge computing technologies have been developing rapidly, foremost to development new tasks in security privacy. Personal information privacy leakage become main concerns IoT surroundings. The promptly IoT-connected devices below an integrated Machine Learning (ML) method might threaten data confidentiality. standard centralized ML-assisted methods challenging because they require vast numbers a vital unit. Due rising distribution many systems linked devices, decentralized ML solutions required. Federated learning (FL) was proposed as optimal solution discover these issues. Still, heterogeneity environments poses essential task when executing FL. Therefore, this paper develops Intelligent Deep Model for Enhancing Security (IDFLM-ES) approach IoT-enabled edge-computing environment. presented IDFLM-ES aims identify unwanted intrusions certify safety To accomplish this, technique introduces federated hybrid deep belief network (FHDBN) model using FL on time series produced by devices. Besides, uses normalization golden jackal optimization (GJO) based feature selection pre-processing step. learns individual distributed representation over databases enhance convergence quick learning. Finally, dung beetle optimizer (DBO) is utilized choose effectual hyperparameter FHDBN model. simulation value methodology verified benchmark database. experimental validation portrayed superior accuracy 98.24% compared other models.
Language: Английский
Citations
3Engineering Applications of Artificial Intelligence, Journal Year: 2024, Volume and Issue: 133, P. 108435 - 108435
Published: April 25, 2024
Language: Английский
Citations
17Computer Science Review, Journal Year: 2024, Volume and Issue: 54, P. 100666 - 100666
Published: Sept. 20, 2024
Language: Английский
Citations
15Chemical Engineering Journal, Journal Year: 2024, Volume and Issue: 495, P. 153382 - 153382
Published: June 21, 2024
Language: Английский
Citations
12Engineering Reports, Journal Year: 2024, Volume and Issue: unknown
Published: Nov. 13, 2024
ABSTRACT In the realm of astrophysical numerical calculations, demand for enhanced computing power is imperative. The time‐consuming nature particularly in domain solar convection, poses a significant challenge Astrophysicists seeking to analyze new data efficiently. Because they let different kinds be worked on separately, parallel algorithms are good way speed up this kind work. A lot study about how use both multi‐core computers and GPUs do math work energy at same time. Cutting down time it takes with main goal. This way, can looked more quickly without having practice long It works well when you things parallel, especially 3D tasks, which speeds lot. proof important adjust parallelization methods based size numbers. But 2D math, than one core better. results not only fix bugs models but also show that changes little gear processed.
Language: Английский
Citations
11Neural Computing and Applications, Journal Year: 2024, Volume and Issue: 36(27), P. 16621 - 16656
Published: July 22, 2024
Language: Английский
Citations
10Future Healthcare Journal, Journal Year: 2024, Volume and Issue: 11(3), P. 100182 - 100182
Published: Sept. 1, 2024
The presence of artificial intelligence (AI) in healthcare is a powerful and game-changing force that completely transforming the industry as whole. Using sophisticated algorithms data analytics, AI has unparalleled prospects for improving patient care, streamlining operational efficiency, fostering innovation across ecosystem. This study conducts comprehensive bibliometric analysis research on healthcare, utilising SCOPUS database primary source.
Language: Английский
Citations
9