An
increasingly
important
component
in
the
development
of
Cloud
Computing,
an
Internet-based
technology,
is
optimization
its
resources.
To
make
most
available
resources,
cloud
data
centre
models
need
a
resource
management
strategy.
The
Bin-Packing
issue
combinatorial
that
may
be
used
to
efficiently
assign
virtual
machines
physical
machines.
In
this
study,
we
present
two-stage
approach
for
managing
and
allocating
resources
effectively.
first
step,
propose
Load
Balanced
Multi-Dimensional
(LBMBP)
heuristics
(VMs)
(PMs
or
hosts)
by
taking
into
account
all
at
their
disposal.
As
indicated
second
stage,
technique
identify
overload
load
balance
hosts
based
on
anomalies
necessary
VM
migration.
CloudSim
Plus
Simulator
simulation
results
were
demonstrate
planned
work,
it
was
found
number
operational
PMs
reduced.
Reduced
energy
use
emigration
rates
due
more
efficient
Journal of Computational Design and Engineering,
Journal Year:
2023,
Volume and Issue:
10(3), P. 1110 - 1125
Published: April 29, 2023
Abstract
Technical
analysis
indicators
are
popular
tools
in
financial
markets.
These
help
investors
to
identify
buy
and
sell
signals
with
relatively
large
errors.
The
main
goal
of
this
study
is
develop
new
practical
methods
fake
obtained
from
technical
the
precious
metals
market.
In
paper,
we
analyze
these
different
ways
based
on
recorded
for
10
months.
novelty
research
propose
hybrid
neural
network-based
metaheuristic
algorithms
analyzing
them
accurately
while
increasing
performance
indicators.
We
combine
a
convolutional
network
bidirectional
gated
recurrent
unit
whose
hyperparameters
optimized
using
firefly
algorithm.
To
determine
select
most
influential
variables
target
variable,
use
another
successful
recently
developed
metaheuristic,
namely,
moth-flame
optimization
Finally,
compare
proposed
models
other
state-of-the-art
single
deep
learning
machine
literature.
finding
that
metaheuristics
can
be
useful
as
decision
support
tool
address
control
enormous
uncertainties
Revista Cientifica de Sistemas e Informatica,
Journal Year:
2025,
Volume and Issue:
5(1), P. e889 - e889
Published: Jan. 20, 2025
Este
estudio
analiza
la
aplicación
de
inteligencia
artificial
(IA)
en
gestión
del
talento
humano
y
el
conocimiento
organizacional
mediante
una
revisión
sistemática
50
artículos
científicos
indexados
Scopus.
Se
empleó
metodología
documental
con
criterios
selección
basados
relevancia
actualidad.
identificaron
las
principales
aplicaciones
IA
optimización
procesos
administrativos,
personalización
programas
formación
toma
decisiones
estratégicas
basadas
datos.
Entre
los
enfoques
analizados
destacan
aprendizaje
automático,
minería
datos
sistemas
expertos,
cuales
han
mejorado
evaluación
desempeño,
personal
conocimiento.
Los
resultados
evidencian
que
ha
incrementado
eficiencia
talento,
aunque
persisten
desafíos
como
calidad
datos,
resistencia
sesgos
algoritmos
selección.
concluye
adopción
recursos
humanos
sigue
crecimiento,
promoviendo
modelos
más
adaptativos.
Sin
embargo,
es
necesario
abordar
sus
limitaciones
marcos
normativos
estrategias
supervisión
garanticen
implementación
ética,
equitativa
alineada
objetivos
organizacionales.
International Journal of Management Economics and Business,
Journal Year:
2025,
Volume and Issue:
21(1), P. 161 - 198
Published: March 26, 2025
İşgücü
devri,
organizasyonlar
için
önemli
maliyet
ve
verimlilik
kayıplarına
yol
açmaktadır.
Bu
çalışma,
işten
ayrılma
tahminlerini
geliştirmek
amacıyla,
geleneksel
istatistiksel
modellerin
ötesine
geçerek
makine
öğrenimi
derin
öğrenme
tekniklerini
entegre
eden
yenilikçi
bir
yaklaşım
sunmaktadır.
Çalışma,
veri
setindeki
değişkenleri
2B
karekod
görüntülerine
dönüştürmek
suretiyle,
CNN
tabanlı
modellerinin
bu
görüntüler
üzerinde
sınıflandırma
yapabilmesini
sağlamıştır.
adım,
görsel
işleme
yeteneklerini
kullanarak
daha
karmaşık
yapılarını
analiz
etme
potansiyelini
ortaya
koymaktadır.
Araştırma,
çeşitli
öğrenmesi
modellerini
değerlendirdikten
sonra
ResNet-18
modeli
kullanılarak
özellik
çıkarımı
gerçekleştirilmiştir.
Daha
sonra,
RelieF
algoritması
seçilen
en
etkili
10
özelliğe
dayanarak
optimize
edilmiş
Hafif
Gradyan
Artırma
(LighhtGBM)
modeli,
%100
doğruluk,
hassasiyet
F1-skoru
gibi
mükemmel
performans
metrikleri
elde
etmiştir.
sonuçlar,
modelin
tahminlerinde
yüksek
etkinlik
sergilediğini
insan
kaynakları
yönetimi
pratiğine
katkılarda
bulunabileceğini
göstermektedir.
Advances in transdisciplinary engineering,
Journal Year:
2024,
Volume and Issue:
unknown
Published: June 26, 2024
When
enterprises
face
a
large
amount
of
enterprise
data,
how
to
effectively
utilize
information
better
manage
talent
has
become
key
issue
that
urgently
needs
be
solved.
Therefore,
this
article
proposes
human
resource
decision-making
optimization
method
based
on
the
Hadoop
big
data
platform.
By
taking
steps
such
as
collection,
feature
extraction,
model
construction,
and
decision
optimization,
scientificity
accuracy
management
can
improved.
This
compares
performance
algorithm
used
with
machine
learning
(ML)
deep
(DL)
algorithms,
results
indicate
F1
value
designed
in
is
95.8%,
which
higher
than
84.7%
DL
77.9%
ML.
Experiments
have
shown
enhance
efficiency
decision-making,
providing
strong
support
for
enterprises.