Predicción de la fertilidad del suelo mediante aprendizaje automático en la provincia de Alto Amazonas, Perú DOI Creative Commons
César O. Arévalo-Hernández, Enrique Arévalo‐Gardini, Luis Arévalo

et al.

Revista Peruana de Investigación Agropecuaria, Journal Year: 2023, Volume and Issue: 3(2), P. e63 - e63

Published: Oct. 10, 2023

El objetivo del trabajo fue predecir la fertilidad suelo en provincia de Alto Amazonas con el uso imágenes satelitales y técnicas aprendizaje automático. estudio se ubicó Perú. Se realizaron muestreos suelos toda provincia, totalizando 100 muestras. Posteriormente análisis físicos (textura) químicos suelo. Las obtuvieron USGS los índices vegetación calcularon base estas imágenes. Finalmente, utilizó descriptivo modelado automático utilizando 06 algoritmos (GLM, CUBIST, KKNN, SVM, Random Forest NN) que seleccionaron función su R2 RMSE. En este observamos mayoría tienen bajos pH, P, Mg, K alta acidez. También lograron obtener buenas predicciones para Ca, Mg CIC observó algoritmo más exitoso Forest. Sin embargo, Al, Cubist tuvo mejores resultados. Este es uno primeros trabajos utiliza Amazonía peruana espera pueda servir como futuros proyectos.

A graph-factor-based random forest model for assessing and predicting carbon emission patterns - Pearl River Delta urban agglomeration DOI
Y.K. Ding, Yongping Li, Heran Zheng

et al.

Journal of Cleaner Production, Journal Year: 2024, Volume and Issue: 469, P. 143220 - 143220

Published: July 20, 2024

Language: Английский

Citations

6

Predictive Modeling of soil salinity integrating remote sensing and soil variables: An ensembled deep learning approach DOI Creative Commons
Sana Arshad, Syed Jamil Hasan Kazmi, Endre Harsányi

et al.

Energy Nexus, Journal Year: 2025, Volume and Issue: unknown, P. 100374 - 100374

Published: Feb. 1, 2025

Language: Английский

Citations

0

Variability analysis of soil organic carbon content across land use types and its digital mapping using machine learning and deep learning algorithms DOI
Mounir Oukhattar, Sébastien Gadal,

Yannick Robert

et al.

Environmental Monitoring and Assessment, Journal Year: 2025, Volume and Issue: 197(5)

Published: April 10, 2025

Language: Английский

Citations

0

Assessing Impact of Land Use/Land Cover Dynamic on Urban Climate Change in a Semi-Arid Region – Case Study of Agadir City (Morocco) DOI Creative Commons
Ijjou Idoumskine, Ali Aydda, Abdelkrim Ezaidi

et al.

Ecological Engineering & Environmental Technology, Journal Year: 2024, Volume and Issue: 25(4), P. 172 - 187

Published: Feb. 23, 2024

This research sought to assess historically the urban expansion of Agadir city in Morocco within 35-year timespan (1984-2019), and influence those changes on regulating services Agadir.It was achieved by applying support vector machine supervised (SVM) algorithm each Landsat products derive land use/ cover (LULC) maps.High accuracy assessment values were obtained for all classified maps.Spectral radiance model exploited successfully highlight spatiotemporal thermal behavior surfaces.Terrestrial carbon dynamics LULC evaluated a process-based model.The outcomes this paper revealed an important with loss vegetation bare land.This evolution impacts surface temperature (LST) caused storage that contributes local climate change.These findings could assist policy-makers characterize sustainable area, especially, interpret how where might alter regulation ecosystem services.

Language: Английский

Citations

1

Dam Siltation in the Mediterranean Region Under Climate Change: A Case Study of Ahmed El Hansali Dam, Morocco DOI Open Access
Hassan Mosaid, Ahmed Barakat, El Houssaine Bouras

et al.

Water, Journal Year: 2024, Volume and Issue: 16(21), P. 3108 - 3108

Published: Oct. 30, 2024

Dams are vital for irrigation, power generation, and domestic water needs, but siltation poses a significant challenge, especially in areas prone to erosion, potentially shortening dam’s lifespan. The Ahmed El Hansali Dam Morocco faces heightened due its upstream region being susceptible erosion-prone rocks high runoff. This study estimates the at dam from construction up 2014 using bathymetric data Brown model, which is widely-used empirical model that calculates reservoir trap efficiency. Additionally, evaluates impact of Land Use Cover (LULC) changes projected future rainfall until around 2076 based on rates. results indicate LULC, particularly temporal variations precipitation, have dam. Notably, strongly correlated with rate, an R2 0.92. efficiency sediment trapping (TE) 97.64%, meaning 97.64% catchment area trapped or deposited bottom estimated annual specific yield about 32,345.79 tons/km2/yr, accumulation rate approximately 4.75 Mm3/yr. half-life be 2076, precipitation projections may extend this timeframe strong correlation between precipitation. soil erosion driven by land management practices plays crucial role dynamics. Hence, offers comprehensive assessment dynamics dam, providing essential information long-term effects use changes, climate projections. These findings assist decision makers managing sedimentation more effectively, ensuring durability extending life.

Language: Английский

Citations

1

A Geospatial Analysis of Vegetation Cover Change and Watershed-Scale Biophysical Impacts in a Low-Income Country Context DOI
Abubakarr S. Mansaray, Alfred S. Bockarie,

Muhammad Umar Akbar

et al.

Published: Jan. 1, 2024

Low-income societies have limited resources for continuous data generation to support watershed management. We utilize open-source geospatial delineate changes in vegetation cover between 1974 and 2022 the Rokel River Basin (RRB) Western Area (WAB) Sierra Leone. rank watersheds into high-risk a >10% net decline cover, moderate-risk ≤10% low-risk gain cover. elucidate impacts of these on carbon-nitrogen (C:N) ratio soil moisture. Landsat imagery, indexes, climate, elevation were used as input variables Random Forest classifier Google Earth Engine (GEE). Site visits made 74 RRB communities 110 WAB document land use practices. The results reveal 8 58 WAB, with identified risk factors including farming, mining, logging, urbanization. C:N moisture are highest areas stable they sharply complete clearance. With climate change projections indicating future intensification hydrologic cycle, deforestation could exacerbate vulnerability droughts, flooding disasters, sediment transport impacted watersheds.

Language: Английский

Citations

0

Development of unique soil organic carbon stability index under influence of integrated nutrient management in four major soil orders of India DOI
R. K. Yadav, Tapan Jyoti Purakayastha, Debarati Bhaduri

et al.

Journal of Environmental Management, Journal Year: 2024, Volume and Issue: 360, P. 121208 - 121208

Published: May 23, 2024

Language: Английский

Citations

0

Soil quality index: a tool to detect the sensitivity to soil erosion in an agricultural catchment from the Middle Atlas of Morocco. DOI Open Access
Nadia Ennaji, Hassan Ouakhir, Halouan Said

et al.

IOP Conference Series Earth and Environmental Science, Journal Year: 2024, Volume and Issue: 1398(1), P. 012004 - 012004

Published: Oct. 1, 2024

Abstract The present paper focuses on the application of Soil Quality Index (SQI) within Tiguert catchment, situated in Middle Atlas Morocco. studied covering approximately 10.2 km², experiences a semi-arid climate with irregular rainfall and is designated as an agricultural area, making it ideal site for studying intricate interactions between natural processes human activities. SQI developed part Mediterranean Desertification Land Use (MEDALUS) project tailored to unique conditions region. In case calculated using formula that considers topographical slope, horizontal depth soil, parental material, soil brightness. Consequently, results depict promising scenario, 61% classified “High Quality,” indicating robust health resilience despite challenges posed by climate. 31% categorized “Moderate Quality” underscores areas requiring specific management attention, while 8% identified “Low signals localized potentially influenced patterns. Furthermore, are closely linked erosion dynamics, higher values associated improved resistance erosion. dynamic connection precipitation patterns over 40-year analysis indicates impact varying health. Extreme events correspond percentages category, drier periods align lower percentages, emphasizing relationship quality. A comprehensive across diverse ecosystems reveals variations health, importance land approaches different use types optimize overall sustainability.

Language: Английский

Citations

0

Predicción de la fertilidad del suelo mediante aprendizaje automático en la provincia de Alto Amazonas, Perú DOI Creative Commons
César O. Arévalo-Hernández, Enrique Arévalo‐Gardini, Luis Arévalo

et al.

Revista Peruana de Investigación Agropecuaria, Journal Year: 2023, Volume and Issue: 3(2), P. e63 - e63

Published: Oct. 10, 2023

El objetivo del trabajo fue predecir la fertilidad suelo en provincia de Alto Amazonas con el uso imágenes satelitales y técnicas aprendizaje automático. estudio se ubicó Perú. Se realizaron muestreos suelos toda provincia, totalizando 100 muestras. Posteriormente análisis físicos (textura) químicos suelo. Las obtuvieron USGS los índices vegetación calcularon base estas imágenes. Finalmente, utilizó descriptivo modelado automático utilizando 06 algoritmos (GLM, CUBIST, KKNN, SVM, Random Forest NN) que seleccionaron función su R2 RMSE. En este observamos mayoría tienen bajos pH, P, Mg, K alta acidez. También lograron obtener buenas predicciones para Ca, Mg CIC observó algoritmo más exitoso Forest. Sin embargo, Al, Cubist tuvo mejores resultados. Este es uno primeros trabajos utiliza Amazonía peruana espera pueda servir como futuros proyectos.

Citations

0