Environmental Monitoring and Assessment, Journal Year: 2024, Volume and Issue: 197(1)
Published: Dec. 26, 2024
Language: Английский
Environmental Monitoring and Assessment, Journal Year: 2024, Volume and Issue: 197(1)
Published: Dec. 26, 2024
Language: Английский
Chemical Engineering Journal, Journal Year: 2025, Volume and Issue: 505, P. 159151 - 159151
Published: Jan. 6, 2025
Language: Английский
Citations
2Applied Sciences, Journal Year: 2025, Volume and Issue: 15(3), P. 1018 - 1018
Published: Jan. 21, 2025
Predicting biomass gasification gases is crucial for energy production and environmental monitoring but poses challenges due to complex relationships variability. Machine learning has emerged as a powerful tool optimizing managing these processes. This study uses Bayesian optimization tune parameters various machine methods, including Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient-Boosting (LightGBM), Elastic Net, Adaptive (AdaBoost), Regressor (GBR), K-nearest Neighbors (KNN), Decision Tree (DT), aiming identify the best model predicting compositions of CO, CO2, H2, CH4 under different conditions. Performance was evaluated using correlation coefficient (R), Root Mean Squared Error (RMSE), Absolute Percentage (MAPE), Relative (RAE), execution time, with comparisons visualized Taylor diagram. Hyperparameter optimization’s significance assessed via t-test effect size Cohen’s d. XGBoost outperformed other models, achieving high R values optimal conditions (0.951 0.954 0.981 0.933 CH4) maintaining robust performance suboptimal (0.889 0.858 0.941 0.856 CH4). In contrast, (KNN) Net showed poorest stability. underscores importance hyperparameter in enhancing demonstrates XGBoost’s superior accuracy robustness, providing valuable framework applying management monitoring.
Language: Английский
Citations
1International Journal of Energy Research, Journal Year: 2024, Volume and Issue: 2024(1)
Published: Jan. 1, 2024
This comprehensive review delves into the intersection of ensemble machine learning models and interpretability techniques for biomass waste gasification, a field crucial sustainable energy solutions. It tackles challenges like feedstock variability temperature control, highlighting need deeper understanding to optimize gasification processes. The study focuses on advanced modeling random forests gradient boosting, alongside methods Shapley additive explanations partial dependence plots, emphasizing their importance transparency informed decision‐making. Analyzing diverse case studies, explores successful applications while acknowledging overfitting computational complexity, proposing strategies practical robust models. Notably, finds consistently achieve high prediction accuracy (often exceeding R 2 scores 0.9) gas composition, yield, heating value. These (34% reviewed papers) are most applied method, followed by artificial neural networks (26%). Heating value (12%) was studied performance metric. However, is often neglected during model development due complexity permutation Gini importance. paper calls dedicated research utilizing interpreting models, especially co‐gasification scenarios, unlock new insights process synergy. Overall, this serves as valuable resource researchers, practitioners, policymakers, offering guidance enhancing efficiency sustainability gasification.
Language: Английский
Citations
8Case Studies in Chemical and Environmental Engineering, Journal Year: 2025, Volume and Issue: unknown, P. 101143 - 101143
Published: Feb. 1, 2025
Language: Английский
Citations
0Biomass Conversion and Biorefinery, Journal Year: 2025, Volume and Issue: unknown
Published: April 23, 2025
Language: Английский
Citations
0Adıyaman üniversitesi sosyal bilimler enstitüsü dergisi/Adıyaman üniversitesi sosyal bilimler enstitisü dergisi, Journal Year: 2025, Volume and Issue: 49, P. 704 - 736
Published: April 28, 2025
Bu çalışmada, Türkiye’deki 81 ilin ayrı yıllık atık miktarlarını belirlemek amacıyla yapay zeka destekli bir uygulama yapıldı. için bulanık mantık temelli Fuzzy Matlab ara yüzü kullanıldı. Uygulamanın kullanılabilirliğini görmek TÜİK tarafından belirlenen 2020 yılı toplam verileri Atıkların sınıflandırılmasında Sanayi, Maden-Termik, Sağlık Kuruluşu ve Nüfus kriterleri göz önünde bulunduruldu. sınıflandırma, verilerinin bu kategoriler altında sınıflandırılmış olması nedeniyle tercih edilmiştir. ile ilden yılında toplanması gereken miktarı belirlendi. Böylece illere göre miktarını tahmin etmek yönetimi süreçlerinde verimliliği artırma amaçlandı. Elde edilen bulgular, yerel yönetimlerin ilgili paydaşların stratejilerini iyileştirmelerine yönelik somut veriler sunarak, sıfır hedeflerine ulaşma yolunda daha etkin politikalar geliştirmelerine yardımcı olabilir. Yapay zekâ sistemlerinin kullanımının artırılması, yalnızca çevresel sürdürülebilirliği artırmakla kalmayacak, aynı zamanda atıkların ekonomiye kazandırılmasına da olanak sağlayacaktır. Sonuç olarak, tür araştırmalar, Türkiye’nin yönetiminde artırırken, hedefine adım atılmasına katkı sağlayacaktır
Citations
0Sustainable Energy Technologies and Assessments, Journal Year: 2024, Volume and Issue: 73, P. 104123 - 104123
Published: Dec. 7, 2024
Language: Английский
Citations
3Renewable Energy, Journal Year: 2024, Volume and Issue: 235, P. 121318 - 121318
Published: Sept. 7, 2024
Language: Английский
Citations
1Resources Conservation and Recycling, Journal Year: 2024, Volume and Issue: 215, P. 108090 - 108090
Published: Dec. 18, 2024
Language: Английский
Citations
0Environmental Monitoring and Assessment, Journal Year: 2024, Volume and Issue: 197(1)
Published: Dec. 26, 2024
Language: Английский
Citations
0