Spectral imaging in crop monitoring and disease diagnosis: A comprehensive review
Salah‐Eddine Laasli,
No information about this author
Fouad Mokrini,
No information about this author
Amal Hari
No information about this author
et al.
CABI Reviews,
Journal Year:
2025,
Volume and Issue:
unknown
Published: Feb. 26, 2025
Abstract
Spectral
imaging
is
a
technique
that
captures
and
analyzes
the
spectral
information
of
an
object,
such
as
its
reflectance,
transmittance,
or
fluorescence.
It
has
been
widely
used
in
various
fields,
remote
sensing,
food
quality
assessment.
In
recent
years,
also
emerged
promising
tool
for
crop
disease
diagnosis,
it
can
provide
rapid,
non-destructive,
accurate
detection
plant
pathogens
symptoms.
This
review
aims
to
concise
overview
principles,
methods,
applications,
challenges
diagnosis.
First,
we
introduce
basic
sensing
concepts
types
imaging,
hyperspectral,
multispectral
imaging.
Second,
discuss
main
steps
techniques
involved
analysis,
image
acquisition,
processing,
feature
extraction,
classification.
Third,
present
some
representative
examples
applications
fungal,
bacterial,
viral,
nematode
infections.
Finally,
highlight
importance
artificial
intelligence
integration
alongside
current
limitations
future
directions
Language: Английский
Multivariate Time Series Models for Soil Nutrient and Yield Prediction in Site Specific Integrated Nutrient Management
Arpana Devi,
No information about this author
S. Maragatham,
No information about this author
R. Santhi
No information about this author
et al.
Communications in Soil Science and Plant Analysis,
Journal Year:
2025,
Volume and Issue:
unknown, P. 1 - 19
Published: April 6, 2025
Language: Английский
Soil Conservation and Information Technologies: A Literature Review
Smart Agricultural Technology,
Journal Year:
2025,
Volume and Issue:
unknown, P. 100935 - 100935
Published: April 1, 2025
Language: Английский
Point-to-Interval Prediction Method for Key Soil Property Contents Utilizing Multi-Source Spectral Data
Agronomy,
Journal Year:
2024,
Volume and Issue:
14(11), P. 2678 - 2678
Published: Nov. 14, 2024
Key
soil
properties
play
pivotal
roles
in
shaping
crop
growth
and
yield
outcomes.
Accurate
point
prediction
interval
of
serve
as
crucial
references
for
making
informed
decisions
regarding
fertilizer
applications.
Traditional
testing
methods
often
entail
laborious
resource-intensive
chemical
analyses.
To
address
this
challenge,
study
introduced
a
novel
approach
leveraging
spectral
data
fusion
techniques
to
forecast
key
properties.
The
initial
datasets
were
derived
from
UV–visible–near-infrared
(UV-Vis-NIR)
mid-infrared
(MIR)
data,
which
underwent
preprocessing
stages
involving
smoothing
denoising
fractional-order
derivative[s]
(FOD)
transform
techniques.
After
extracting
the
characteristic
bands
both
types
three
strategies
developed,
further
enhanced
using
machine
learning
Among
these
strategies,
outer-product
analysis
algorithm
proved
particularly
effective
improving
accuracy.
For
predictions,
metrics
such
coefficient
determination
(R2)
error
demonstrated
significant
enhancements
compared
predictions
based
solely
on
single-source
data.
Specifically,
R2
values
increased
by
0.06
0.41,
underscoring
efficacy
combined
with
partial
least
squares
regression
(PLSR).
In
addition,
coverage
width
criterion
establish
reliable
intervals
properties,
including
organic
matter
(SOM),
total
nitrogen
(TN),
hydrolyzed
(HN),
available
potassium
(AK).
These
developed
within
framework
kernel
density
estimation
(KDE)
model,
facilitates
quantification
uncertainty
property
estimates.
phosphorus
(AP),
preliminary
assessment
its
concentration
was
also
provided.
By
integrating
advanced
learning,
paves
way
more
agricultural
decision
sustainable
management
strategies.
Language: Английский
Developing novel spectral indices for precise estimation of soil pH and organic carbon with hyperspectral data and machine learning
Environmental Monitoring and Assessment,
Journal Year:
2024,
Volume and Issue:
196(12)
Published: Nov. 26, 2024
Language: Английский
Aplicaciones de la inteligencia artificial en el monitoreo y conservación ambiental: una revisión exploratoria
REVISTA AMBIENTAL AGUA AIRE Y SUELO,
Journal Year:
2024,
Volume and Issue:
15(2), P. 48 - 68
Published: Sept. 27, 2024
Este
artículo
explora
el
uso
de
la
inteligencia
artificial
en
vigilancia
y
preservación
del
agua,
aire
suelo.
El
análisis
examinó
estudios
revisador
por
pares
publicados
entre
2020
2024,
con
un
enfoque
específico
contribución
a
mejora
las
técnicas
gestión
ambiental.
procedimiento
selección
se
limitó
treinta
tres
investigaciones
pertinentes,
que
clasificaron
dominios
principales,
calidad
suelo,
contaminación
monitoreo
ambiental,
aplicaciones
IA.
Las
artificial,
incluido
aprendizaje
automático
profundo,
muestran
gran
potencial
para
mejorar
precisión
predicciones
optimizar
asignación
recursos
varios
campos
ambientales.
Los
usos
principales
esta
tecnología
son
evaluar
predecir
los
niveles
gestionar
hídricos.
La
integración
IA
métodos
convencionales
eficacia
Sin
embargo,
existen
dificultades
continuas
garantizar
confiabilidad
datos,
capacidad
modelos
aplicarse
diferentes
escenarios
exitosa
estos
diversas
situaciones.
ha
demostrado
su
generar
cambios
significativos
conservación
medio
ambiente.
posteriores
deberían
dar
prioridad
ampliación
conjuntos
incorporación
tecnologías
desarrollo
resolución
consecuencias
socioeconómicas,
fin
aprovechar
al
máximo
abordar
cuestiones
ambientales
complejas.