Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction DOI Open Access
LI Li-li, Jeng Hua Wei

Sustainability, Journal Year: 2024, Volume and Issue: 16(23), P. 10634 - 10634

Published: Dec. 4, 2024

Accurately predicting the state of surface water quality is crucial for ensuring sustainable use resources and environmental protection. This often requires a focus on range factors affecting quality, such as physical chemical parameters. Tree models, with their flexible tree-like structure strong capability partitioning selecting influential features, offer clear decision-making rules, making them suitable this task. However, an individual decision tree model has limitations cannot fully capture complex relationships between all influencing parameters quality. Therefore, study proposes method combining ensemble models voting algorithms to predict classification. was conducted using five monitoring sites in Qingdao, representing portion many municipal environment stations China, employing single-factor determination stringent standards. The soft algorithm achieved highest accuracy 99.91%, addressed imbalance original categories, reaching Matthews Correlation Coefficient (MCC) 99.88%. In contrast, conventional machine learning algorithms, logistic regression K-nearest neighbors, lower accuracies 75.90% 91.33%, respectively. Additionally, model’s supervision misclassified data demonstrated its good rules. trained also transferred directly at 13 Beijing, where it performed robustly, achieving hard 97.73% MCC 96.81%. countries’ systems, different qualities correspond uses, magnitude related categories; critical can even determine category. are highly capable handling nonlinear important allowing identify exploit interactions parameters, which especially when multiple together there significant motivation develop model-based prediction models.

Language: Английский

Comparison of extreme gradient boosting, deep learning, and self-organizing map methods in predicting groundwater depth DOI
Vahid Gholami, Mohammad Reza Khaleghi, E. Taghvaye Salimi

et al.

Environmental Earth Sciences, Journal Year: 2025, Volume and Issue: 84(7)

Published: March 21, 2025

Language: Английский

Citations

0

Estimating Total Dissolved Solids in Groundwater Using Machine Learning Models DOI
Sumita Gulati, Anshul Bansal, Ashok Pal

et al.

Natural Resources Research, Journal Year: 2025, Volume and Issue: unknown

Published: April 2, 2025

Language: Английский

Citations

0

Multi-spectral evaluation of total nitrogen, phosphorus and potassium content in soil using Vis-NIR spectroscopy based on a modified support vector machine with whale optimization algorithm DOI

Mochen Liu,

Yang Kuankuan,

Yinfa Yan

et al.

Soil and Tillage Research, Journal Year: 2025, Volume and Issue: 252, P. 106567 - 106567

Published: April 19, 2025

Language: Английский

Citations

0

Exploración de las Características Hidroquímica del Agua Subterránea en la Zona Baja de la Cuenca Río Carrizal DOI
Veris Antonio Saldarriaga Lucas

Revista Politécnica, Journal Year: 2025, Volume and Issue: 55(2), P. 1 - 16

Published: May 16, 2025

La falta del recurso hídrico en cantidad y calidad ha generado diferentes intereses las instituciones, investigadores científicos estudiar los cuerpos de agua para el desarrollo humano. El objetivo la investigación fue explorar características hidroquímicas subterránea cuenca baja valle río Carrizal mediante técnicas multivariantes geoespaciales que permitan establecer este esta zona. trabajo consistió tomar muestras catorce pozos observación, cada uno con distintos usos suelo. Los parámetros se evaluaron fueron: pH, conductividad eléctrica, dureza, sólidos totales disueltos, relación absorción sodio, además cationes aniones. De manera general, hidroquímicos muestran variable dureza encuentra un nivel superior al permisible su uso, mientras que: conductividad, pH mostraron valores bajos sin problemas uso. catión calcio (Ca2+) representa 67 % ion Bicarbonato 75 siendo concentraciones mayoritarias aniones, respectivamente. Profundizando más análisis pudo evidenciar existente entre parámetro totales, calcio, bicarbonato, cloruro sulfato. determinada por mineralización roca madre, esto traduce concentración alta correlación aniones Las empleadas exploración permitieron conocer comportamientos Carrizal.

Citations

0

Groundwater quality modeling and determining critical points: a comparison of machine learning to Best–Worst Method DOI
Ali Nasiri Khiavi, Raoof Mostafazadeh, Maryam Adhami

et al.

Environmental Science and Pollution Research, Journal Year: 2023, Volume and Issue: 30(54), P. 115758 - 115775

Published: Oct. 27, 2023

Language: Английский

Citations

9

Hydrochemical investigation and prediction of groundwater quality in a tropical semi-arid region of southern India using machine learning DOI
Girish Gopinath,

A.L. Achu,

Ayarkode Ramachandran Sabitha

et al.

Groundwater for Sustainable Development, Journal Year: 2024, Volume and Issue: unknown, P. 101343 - 101343

Published: Sept. 1, 2024

Language: Английский

Citations

3

Water quality estimates using machine learning techniques in an experimental watershed DOI Creative Commons
David de Andrade Costa, Yared Bayissa, Kargean Vianna Barbosa

et al.

Journal of Hydroinformatics, Journal Year: 2024, Volume and Issue: 26(11), P. 2798 - 2814

Published: Nov. 1, 2024

ABSTRACT This study aims to identify the best machine learning (ML) approach predict concentrations of biochemical oxygen demand (BOD), nitrate, and phosphate. Four ML techniques including Decision tree, Random Forest, Gradient Boosting XGBoost were compared estimate water quality parameters based on biophysical (i.e., population, basin area, river slope, level, stream flow), physicochemical properties conductivity, turbidity, pH, temperature, dissolved oxygen) input parameters. The innovation lies in combination on-the-spot variables with additional characteristics watershed. model performances evaluated using coefficient determination (R2), Nash-Sutcliffe efficiency (NSE), Root Mean Squared Error (RMSE) Kling-Gupta Efficiency (KGE) coefficient. robust five-fold cross-validation, along hyperparameter tuning, achieved R2 values 0.71, 0.66, 0.69 for phosphate, BOD; NSE 0.67, 0.65, 0.62, KGE 0.64, 0.75, 0.60, respectively. yielded good results, showcasing superior performance when considering all analysis performed, but his was closely match by other algorithms. overall modeling design approach, which includes careful consideration data preprocessing, dataset splitting, statistical evaluation metrics, feature analysis, curve are just as important algorithm selection.

Language: Английский

Citations

3

Using SWAT and SWAT-CUP for hydrological simulation and uncertainty analysis of the arid and semiarid watersheds (Case study: Zoshk Watershed, Shandiz, Iran) DOI Creative Commons

Seyedhashem Hosseini,

Hoda Memarian,

Hadi Memarian

et al.

Applied Water Science, Journal Year: 2024, Volume and Issue: 14(12)

Published: Nov. 29, 2024

The aims of this study are capability assessment the SWAT model and SWAT-CUP software in hydrological simulation evaluation uncertainty estimating runoff. In modeling process, basin was divided into 12 sub-basins 294 units (HRUs). Model calibration analysis were performed using sequential fitting (SUFI2) algorithm for 2000–2006 2007–2010, respectively. Based on sensitivity results, parameters USLE_P soil protection factor, wet density (SOL_BD), CN among most important determining amount output Among these factors, SCS-CN recognized as sensitive parameter. coefficients R2, bR2, Nash–Sutcliffe index (NS) 0.75, 0.59, 0.67 period 0.46, 0.24, 0.42 validation period. results showed performance is weak stage calibration. This due to lack accuracy precision statistics available region, water collected from upstream gardens area, well existing springs. therefore recommended applications arid semiarid catchments within Iran with similar data. Due limited availability data Iran, has not assessed compared related future

Language: Английский

Citations

2

Enhancing flood mapping through ensemble machine learning in the Gamasyab watershed, Western Iran DOI
Mohammad Bashirgonbad, Behnoush Farokhzadeh, Vahid Gholami

et al.

Environmental Science and Pollution Research, Journal Year: 2024, Volume and Issue: 31(38), P. 50427 - 50442

Published: Aug. 2, 2024

Language: Английский

Citations

2

Coordinated analysis of groundwater spatiotemporal chemical characteristics, water quality, and potential human health risks with sustainable development in semi-arid regions DOI
Zihan Wang, Yong Wang, Mengjie Shi

et al.

Environmental Geochemistry and Health, Journal Year: 2024, Volume and Issue: 46(10)

Published: Aug. 21, 2024

Language: Английский

Citations

2