
Frontiers in Neuroinformatics, Journal Year: 2025, Volume and Issue: 19
Published: May 2, 2025
Introduction Alzheimer’s disease is a progressive neurodegenerative disorder challenging early diagnosis and treatment. Recent advancements in deep learning algorithms applied to multimodal brain imaging offer promising solutions for improving diagnostic accuracy predicting progression. Method This narrative review synthesizes current literature on applications using neuroimaging. The process involved comprehensive search of relevant databases (PubMed, Embase, Google Scholar ClinicalTrials.gov ), selection pertinent studies, critical analysis findings. We employed best-evidence approach, prioritizing high-quality studies identifying consistent patterns across the literature. Results Deep architectures, including convolutional neural networks, recurrent transformer-based models, have shown remarkable potential analyzing neuroimaging data. These models can effectively structural functional modalities, extracting features associated with pathology. Integration multiple modalities has demonstrated improved compared single-modality approaches. also promise predictive modeling, biomarkers forecasting Discussion While approaches show great potential, several challenges remain. Data heterogeneity, small sample sizes, limited generalizability diverse populations are significant hurdles. clinical translation these requires careful consideration interpretability, transparency, ethical implications. future AI neurodiagnostics looks promising, personalized treatment strategies.
Language: Английский