Comparación de métodos de aprendizaje automático para predicción de valores de cría genómicos en características de crecimiento en bovinos Suizo Europeo
Revista Mexicana de Ciencias Pecuarias,
Journal Year:
2025,
Volume and Issue:
16(1), P. 179 - 193
Published: Feb. 19, 2025
Los
algoritmos
de
Aprendizaje
Automático
(AA)
han
demostrado
ventaja
al
abordar
desafíos
asociados
con
la
cantidad
y
complejidad
información,
permiten
descubrir
patrones,
realizar
análisis
eficientes
servir
como
herramienta
para
toma
decisiones.
Este
estudio,
tuvo
objetivo
comparar
cuatro
métodos
AA:
redes
neuronales
artificiales
(RN),
árboles
regresión
(AR),
bosques
aleatorios
(BA)
máquina
soporte
vectorial
(SVM)
predecir
el
valor
genómico
en
bovinos
Suizo
Europeo
utilizando
registros
fenotípicos
pesos
nacimiento
(PN),
destete
(PD)
año
(PA),
así
información
genómica.
resultados
indican
que
capacidad
predictiva
los
modelos
varía
según
característica
disponible.
En
general,
RN,
BA
SVM
mostraron
un
desempeño
similar,
mientras
AR
inferior.
La
metodología
destacó
mayor
potencial,
obteniendo
valores
más
altos
correlación
Pearson
entre
fenotipos
corregidos
genéticos
predichos
PD.
A
pesar
costo
computacional,
RN
razonable,
especialmente
PN
PA.
selección
del
modelo
final
depende
las
necesidades
particulares
aplicación,
factores
prácticos
disponibilidad
datos,
recursos
computacionales
interpretabilidad;
pero
surgieron
opciones
sólidas
varias
categorías.
Comparative analysis of genomic prediction models based on body weight trait in large yellow croaker (Larimichthys crocea)
Jialu Fang,
No information about this author
Qinglei Xu,
No information about this author
Limin Feng
No information about this author
et al.
Aquaculture,
Journal Year:
2025,
Volume and Issue:
599, P. 742125 - 742125
Published: Jan. 7, 2025
Language: Английский
Enhancing fish farmers’ welfare through digital agricultural innovation platforms: Evidence from Nigeria
Ege Üniversitesi Ziraat Fakültesi Dergisi,
Journal Year:
2024,
Volume and Issue:
61(3), P. 273 - 283
Published: June 1, 2024
Objective:
Despite
the
potential
of
digital
innovation
platforms
to
improve
farmers’
welfare
its
adoption
is
low
due
scanty
empirical
evidence
on
subject
matter.
Therefore,
this
study
examined
contribution
fish
farm
output
and
income
in
Nigeria.
Material
Methods:
Data
gathered
from
187
catfish
farmers
were
analysed
using
descriptive
statistics
t-tests.
Results:
The
results
revealed
that
platform
provides
credit
facilities
boost
their
production
activities.
Before
adopted
platform,
they
stocked
an
average
733.12
fingerlings,
which
increased
952.83
fingerlings
after
adopting
innovation.
Also,
significantly
742.28
kg
1,057.81
kg.
Fish
revenue
farming
consequently
N540,905.11
Nigerian
Naira(USD
1,307.01)
N780,444.98
1,885.82)
by
42.51%
44.29%,
respectively.
Conclusion:
Digital
improved
welfare.
Based
this,
advocates
should
be
encouraged
adopt
creating
awareness
providing
more
funds
through
platforms.
Language: Английский
Breeding evaluations in aquaculture using neural networks
Aquaculture Reports,
Journal Year:
2024,
Volume and Issue:
39, P. 102468 - 102468
Published: Nov. 15, 2024
Language: Английский
Incorporating phylogenetic conservatism and trait collinearity into machine learning frameworks can better predict macroinvertebrate traits
Shuyin Li,
No information about this author
Qingyi Luo,
No information about this author
Ruiwen Li
No information about this author
et al.
Frontiers in Ecology and Evolution,
Journal Year:
2023,
Volume and Issue:
11
Published: Aug. 29, 2023
In
the
face
of
rapid
environmental
changes,
understanding
and
monitoring
biological
traits
functional
diversity
are
crucial
for
effective
biomonitoring.
However,
when
it
comes
to
freshwater
macroinvertebrates,
a
significant
dearth
trait
data
poses
major
challenge.
this
opinion
article,
we
put
forward
machine-learning
framework
that
incorporates
phylogenetic
conservatism
collinearity,
aiming
provide
better
vision
predicting
macroinvertebrate
in
ecosystems.
By
adopting
proposed
framework,
can
advance
biomonitoring
efforts
Accurate
predictions
enable
us
assess
diversity,
identify
stressors,
monitor
ecosystem
health
more
effectively.
This
information
is
vital
making
informed
decisions
regarding
conservation
management
strategies,
especially
context
rapidly
changing
environments.
Language: Английский