Mühendislik Bilimleri ve Tasarım Dergisi,
Journal Year:
2023,
Volume and Issue:
11(2), P. 433 - 448
Published: June 28, 2023
Kapasitesiz
Tesis
Yerleşim
Problemi
(UFLP),
tesislerin
optimal
yerleşimini
belirleyen
NP-zor
bir
problemdir.
UFLP,
NP-Zor
problem
grubundan
olduğu
için,
bu
problemlerin
büyük
örneklerini
çözmek
için
kesin
yöntemlerin
kullanılması,
çözümü
elde
etmek
gereken
yüksek
hesaplama
süreleri
nedeniyle
ciddi
şekilde
sorun
teşkil
edebilir.
Bu
çalışmada,
problemin
karmaşıklığından
dolayı
sürü
zekası
algoritması
tercih
edilmiştir.
Son
yıllarda
sürüş
eğitimi
ilkelerine
dayalı
olarak
geliştirilen
popülasyon
tabanlı
algoritma
olan
Sürüş
eğitim
(DTBO)
UFLP
probleminin
çözümünde
kullanılmıştır.
DTBO’nun
temel
versiyonu
sürekli
çözümünü
ele
aldığından
söz
konusu
algoritmanın
ikili
çözümüne
uyarlanması
gerekmektedir.
Bunun
literatürde
kullanılan
dokuz
farklı
transfer
fonksiyonu
yardımıyla
DTBO
uygun
tasarlanmıştır.
Deneysel
çalışmalar
fonksiyonlarının
adil
kıyaslanabilmesi
eşit
koşullarda
altında
gerçekleştirilmiştir.
Gerçekleştirilen
deneysel
çalışmalarda
içerisinden
Mode-DTBO
algoritmasının
en
başarılı
görülmektedir.
sonuçlara
göre
Mode
küçük,
orta
ve
ölçekli
tüm
setlerinde
hem
çözüm
kalitesi
açısından
de
zaman
çok
Ayrıca
IWO
(Yabani
Ot
Algoritması
–
Invasive
Weed
Optimization)
algoritmasına
ait
3
fonksiyonuyla
(Mode,
Sigmoid
Tanh)
da
kıyaslanmıştır.
Karşılaştırmalı
sonuçlar
incelendiğinde
12
8’inde
(orta
problem)
yaklaşımının
IWO’ya
yaklaşımın
hepsinden
daha
görülmüştür.
Bununla
beraber,
küçük
boyutlu
4
üzerinde
ise
fonksiyonunu
kullanan
her
iki
değeri
yakaladığı
Sonuç
olarak,
yönteminin
etkili
alternatif
sunacağı
söylenebilir.
Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi :/Osmangazi Üniversitesi Mühendislik-Mimarlık Fakültesi dergisi,
Journal Year:
2025,
Volume and Issue:
33(1), P. 1695 - 1711
Published: April 16, 2025
Modeling
the
foraging
behavior
of
honey
badgers,
Honey
Badger
Algorithm
(HBA)
is
a
recently
proposed
metaheuristic
algorithm.
In
this
study,
binary
version
algorithm
that
was
for
solving
continuous
optimization
problems
developed.
The
S-shaped
transfer
function
and
crossover
strategy
were
used
to
transform
into
Eight
functions
with
constant
time-varying
features
used,
most
successful
determined.
Additionally,
effect
examined.
Three
strategies,
single-point,
two-point,
uniform,
applied
as
uniform
strategy,
which
more
than
others,
integrated
(BinHBA)
developed
in
way
tested
on
total
twenty-seven
knapsack
problems,
fifteen
small-scale
twelve
large-scale.
Statistical
tests
employed
analyze
results
compare
them
methods
found
existing
literature.
showed
BinHBA
effective
preferable.
Biomimetics,
Journal Year:
2024,
Volume and Issue:
9(9), P. 572 - 572
Published: Sept. 22, 2024
Feature
selection
(FS)
is
a
classic
and
challenging
optimization
task
in
most
machine
learning
data
mining
projects.
Recently,
researchers
have
attempted
to
develop
more
effective
methods
by
using
metaheuristic
FS.
To
increase
population
diversity
further
improve
the
effectiveness
of
beluga
whale
(BWO)
algorithm,
this
paper,
we
propose
multi-strategies
improved
BWO
(MSBWO),
which
incorporates
circle
mapping
dynamic
opposition-based
(ICMDOBL)
initialization
as
well
elite
pool
(EP),
step-adaptive
Lévy
flight
spiral
updating
position
(SLFSUP),
golden
sine
algorithm
(Gold-SA)
strategies.
Among
them,
ICMDOBL
contributes
increasing
during
search
process
reducing
risk
falling
into
local
optima.
The
EP
technique
also
enhances
algorithm's
ability
escape
from
SLFSUP,
distinguished
original
BWO,
aims
rigor
accuracy
development
spaces.
Gold-SA
introduced
quality
solutions.
hybrid
performance
MSBWO
was
evaluated
comprehensively
on
IEEE
CEC2005
test
functions,
including
qualitative
analysis
comparisons
with
other
conventional
state-of-the-art
(SOTA)
approaches
that
were
2024.
results
demonstrate
superior
algorithms
terms
maintains
better
balance
between
exploration
exploitation.
Moreover,
according
proposed
continuous
MSBWO,
binary
variant
(BMSBWO)
optimizers
obtained
function
ten
UCI
datasets
random
forest
(RF)
classifier.
Consequently,
BMSBWO
has
proven
very
competitive
classification
precision
feature
reduction.
Scientific Reports,
Journal Year:
2024,
Volume and Issue:
14(1)
Published: March 4, 2024
Abstract
Recovery
of
irregular
flights
caused
by
various
reasons
such
as
aircraft
failures
and
airport
closures
is
studied
in
this
research
a
multimodal
time-band
network
model
for
solving
the
issue
proposed.
It
transforms
flight
routing
problem
into
time-based
network,
which
used
to
obtain
delay
cancellation
costs
each
flight.
With
variables,
proposed
aims
minimize
recovery
under
constraints.
This
also
suggests
developed
binary
tree
algorithm,
improves
efficiency
solving.
The
results
show
that
rescheduled
re-selected
routes
are
at
lowest
cost
helpful
achieve
balance
flow
without
affecting
safety.
method
work
shows
its
certain
value
helping
airlines
restore
operations
shortest
possible
time
cost,
improving
operational
service
quality.
International Journal of Computational Intelligence Systems,
Journal Year:
2024,
Volume and Issue:
17(1)
Published: April 22, 2024
Abstract
Binary
optimization
problems
belong
to
the
NP-hard
class
because
their
solutions
are
hard
find
in
a
known
time.
The
traditional
techniques
could
not
be
applied
tackle
those
computational
cost
required
by
them
increases
exponentially
with
increasing
dimensions
of
problems.
Therefore,
over
last
few
years,
researchers
have
paid
attention
metaheuristic
algorithms
for
tackling
an
acceptable
But
unfortunately,
still
suffer
from
being
able
avert
local
minima,
lack
population
diversity,
and
low
convergence
speed.
As
result,
this
paper
presents
new
binary
technique
based
on
integrating
equilibrium
optimizer
(EO)
search
operator,
which
effectively
integrates
single
crossover,
uniform
mutation
flipping
swapping
operator
improve
its
exploration
exploitation
operators.
In
more
general
sense,
is
two
folds:
first
fold
borrows
single-point
crossover
accelerate
speed,
addition
avoiding
falling
into
minima
using
strategy;
second
applying
different
operators
best-so-far
solution
hope
finding
better
solution:
flip
bit
selected
randomly
given
solution,
swap
unique
positions
solution.
This
variant
called
hybrid
(BHEO)
three
common
problems:
0–1
knapsack,
feature
selection,
Merkle–Hellman
knapsack
cryptosystem
(MHKC)
investigate
effectiveness.
experimental
findings
BHEO
compared
classical
algorithm
six
other
well-established
evolutionary
swarm-based
algorithms.
From
findings,
it
concluded
that
strong
alternative
Quantatively,
reach
average
fitness
0.090737884
section
problem
difference
optimal
profits
some
used
Knapsack
2.482.