Su Dalga Enerjisi Üretimi ve Yapay Zekâ: Türkiye’nin Dünyadaki Yeri DOI
Selma Kaymaz, Tuğrul Bayraktar, Çağrı Sel

et al.

Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Journal Year: 2024, Volume and Issue: 29(2), P. 798 - 822

Published: Aug. 20, 2024

Son yıllarda, sürdürülebilir bir dünya için yenilenemeyen enerji kaynaklarının kullanımının azaltılması gerekliliği giderek daha belirgin hale gelmektedir. Fosil yakıt tüketiminden, temiz enerjiye geçiş döneminde, yenilenebilir kaynakları hızla gelişme göstermektedir. Bu gelişmeler ışığında su enerjisi teknolojilerine odak artmaktadır. Enerji potansiyeli gerekli şartlar karşılandığı sürece; kaynaklı üretim projelerinin uygulanması ülkelerin refahına katkı sağlama taşımaktadır. Yenilenebilir üretiminde rekabete konu olan üretimi için; literatürde kıtalar arası enerjinin incelendiği, potansiyelinin ölçüldüğü, santraller uygun yer seçiminin yapıldığı, dalga – iklim ilişkisinin okyanus teknolojileri konularını içeren çalışmalarda geleneksel teknikler yanı sıra yapay zekâ tekniklerine de verilmektedir. Deneysel modelleme saha ölçüm tekniklerinin yüksek maliyetli olduğu, sayısal yöntemlerin parametre ve girdi hazırlık sürecinin zahmetli olması sebebiyle çeşitli yöntemleri, teknolojisinde yoğun şekilde kullanılmaktadır. Yapay sinir ağları da bu alanda karşılaşılan problemlerin çözümünde kullanılan tekniklerden birisi olarak almaktadır. derlemede, Asya Avrupa kıtasında hakkında yapılmış mevcut çalışmalardan bahsedilmekte, Türkiye’nin potansiyelini, literatür incelenerek ortaya konulmaktadır. Ayrıca tekniklerinden ağı metodunun teknolojilerinde ne hangi ölçüde kullanıldığı yöntemlerle ilgili literatüre verilmiştir.

Analysis and Prediction of Tidal Measurement Data from Temporary Stations using the Least Squares Method DOI Open Access
Andi Rusdin,

Hideo OSHIKAWA,

Andi M. A. Divanesia

et al.

Civil Engineering Journal, Journal Year: 2024, Volume and Issue: 10(2), P. 384 - 403

Published: Feb. 1, 2024

This research was conducted by equipping three temporary tidal stations located in places inside Palu Bay with pressure-type gauges. The recorded series fluctuations for 4 months a 5-minute sampling interval (Dt). Moreover, the simple and widely used least squares method (LSM) applied to separate harmonic constants of constituents, including amplitudes (Hi) phases (gi), from observed series. A total 11 dominant constituents were selected based on largest magnitudes generating potential (CE), these include M2, K1, S2, O1, P1, N2, Mf, K2, Mm, Q1, Msf, which diurnal, semidiurnal, long-period constituents. results showed that semidiurnal generated higher than diurnal while produced quite small amplitudes. Furthermore, ratios mainly mixed difference between predicted values small, this validity measurement at stations. performance indicators also LSM had acceptable accuracy compared other methods. datums calculated using peak approach, average range (RA) found be 2.39 m. Doi: 10.28991/CEJ-2024-010-02-03 Full Text: PDF

Language: Английский

Citations

2

Short-term wave forecasting for offshore wind energy in the Baltic Sea DOI
Armin Halicki, A Dudkowska, Gabriela Gic-Grusza

et al.

Ocean Engineering, Journal Year: 2024, Volume and Issue: 315, P. 119700 - 119700

Published: Nov. 24, 2024

Language: Английский

Citations

2

Multi-fidelity surrogate modeling of nonlinear dynamic responses in wave energy farms DOI Creative Commons
Charitini Stavropoulou, Eirini Katsidoniotaki, Nicolás Faedo

et al.

Applied Energy, Journal Year: 2024, Volume and Issue: 380, P. 125011 - 125011

Published: Dec. 4, 2024

Language: Английский

Citations

2

Enhancing Digital Cryptocurrency Trading Price Prediction with an Attention-Based Convolutional and Recurrent Neural Network Approach: The Case of Ethereum DOI
Dawei Shang, Z. J. Guo,

Hui Wang

et al.

Finance research letters, Journal Year: 2024, Volume and Issue: 67, P. 105846 - 105846

Published: July 18, 2024

Language: Английский

Citations

1

A wave forecasting method based on probabilistic diffusion LSTM network for model predictive control of wave energy converters DOI
Yongxiang Lei

Applied Soft Computing, Journal Year: 2024, Volume and Issue: 164, P. 112006 - 112006

Published: July 22, 2024

Language: Английский

Citations

1

A study of appropriate wave energy technology for sustainable development in Australia DOI Creative Commons
Chia‐Nan Wang,

Thuy-Duong Thi Pham,

Dinh-Binh Nguyen

et al.

Journal of Engineering Research, Journal Year: 2024, Volume and Issue: unknown

Published: July 1, 2024

The deployment and development of wave energy systems to increase sector efficiency is essential for governments. To develop maximize the exploitation sources, applying appropriate technologies extremely important. design decision-making tools identify best technology developing resources optimally one primary issues in sector. In this article, we have proposed a Multi-Criteria Decision Making (MCDM) model select suitable among eleven harvesting technologies: OPT PowerBuoy, AquaBuoy, Archimedes Wave Swing, Salter's Duck, Aquamarine PowerOyster, Bio Wave, SEAREV, Weptos, Mighty Whale, dragon. handle conflicting objectives during evaluation, Fuzzy AHP method used calculate weight criteria. Then, ranked using TOPSIS approach. An actual case study from Australia was examined order show viability suggested methodology. This applies valuable reference issue selection; Therefore, managers involved can use problem-solving approach most based on their Research results that optimal sources are WET-05 WET-03 with coefficients 0.852 0.806, respectively. Meanwhile, two considered unsuitable WET-06 WET-11 scores 0.375 0.381, study, combined application FAHP-FTOPSIS methods more because its theoretical ease understanding as well simplicity robustness results.

Language: Английский

Citations

1

A hybrid deep recurrent artificial neural network with a simple exponential smoothing feedback mechanism DOI
Özlem Karahasan, Eren Baş, Erol Eğrioğlu

et al.

Information Sciences, Journal Year: 2024, Volume and Issue: 686, P. 121356 - 121356

Published: Aug. 23, 2024

Language: Английский

Citations

1

Assessing the Efficacy of Improved Learning in Hourly Global Irradiance Prediction DOI Open Access

Abdennasser Dahmani,

Yamina Ammi, Nadjem Bailek

et al.

Computers, materials & continua/Computers, materials & continua (Print), Journal Year: 2023, Volume and Issue: 77(2), P. 2579 - 2594

Published: Jan. 1, 2023

Increasing global energy consumption has become an urgent problem as natural sources such oil, gas, and uranium are rapidly running out. Research into renewable solar is being pursued to counter this. Solar one of the most promising sources, it potential meet world’s needs indefinitely. This study aims develop evaluate artificial intelligence (AI) models for predicting hourly irradiation. The hyperparameters were optimized using Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton training algorithm STATISTICA software. Data from two stations in Algeria with different climatic zones used model. Various error measurements determine accuracy prediction models, including correlation coefficient, mean absolute error, root square (RMSE). optimal support vector machine (SVM) model showed exceptional efficiency during phase, a high coefficient (R = 0.99) low (MAE 26.5741 Wh/m2), well RMSE 38.7045 Wh/m² across all phases. Overall, this highlights importance accurate energy, which can contribute better management planning.

Language: Английский

Citations

1

Fractional-order Q-learning based on modal decomposition and convolutional neural networks for voltage control of smart grids DOI
Linfei Yin, Nan Mo

Applied Soft Computing, Journal Year: 2024, Volume and Issue: 162, P. 111825 - 111825

Published: June 11, 2024

Language: Английский

Citations

0

Wave predictor models for medium and long term based on dual attention-enhanced Transformer DOI
Lina Wang,

xulei wang,

Changming Dong

et al.

Ocean Engineering, Journal Year: 2024, Volume and Issue: 310, P. 118761 - 118761

Published: July 22, 2024

Language: Английский

Citations

0