Nutzung digitaler Methoden zur Realisierung eines Digitalen Zwillings von Brückenbauwerken DOI Open Access

Martin Köhncke,

Al‐Hakam Hamdan,

Jens Bartnitzek

et al.

Bautechnik, Journal Year: 2025, Volume and Issue: unknown

Published: Feb. 17, 2025

Abstract Zur Bewältigung der Herausforderungen alternden Infrastruktur und des Fachkräftemangels kann die Digitalisierung durch Effizienzsteigerungen einen wesentlichen Beitrag leisten. Die Zielsetzung ist Realisierung eines Digitalen Zwillings Infrastruktur, das Bauwerksmanagement sowohl auf technischer als auch administrativer Ebene effizienter gestaltet. Bauwerksüberwachung erfolgt über Erfassung physischer Veränderungen deren Übertragung digitale Abbild, eine Analyse Ursachen ermöglicht. Erreichung dieser Ziele werden Methoden wie Building Information Modelling (BIM) Ontologien eingesetzt. sind maschineninterpretierbare Modelle, Bauwerksinformationen sowie zugrunde liegende Expertenwissen vereinen somit effizientere Administration ermöglichen. BIM ermöglicht Verknüpfung semantischer, alphanumerischer geometrischer Informationen. Der bidirektionale Informationsaustausch zwischen realen Brückenbauwerken digitalem Abbild Kern Zwillings. Dieser Ansatz wird bislang nur in einer begrenzten Anzahl von Projekten teilweise umgesetzt, weshalb ein Blick unterschiedlichen Vorgehensweisen mit ihren Vor‐ Nachteilen damit verbundenen sinnvoll ist. Es Vorgehensweise für Erstellung Teilsystemen Digitaler Zwillinge Basis Structural Health Monitoring vorgestellt.

The role of artificial intelligence and digital technologies in dam engineering: Narrative review and outlook DOI
Mohammad Amin Hariri‐Ardebili, Golsa Mahdavi,

Larry K. Nuss

et al.

Engineering Applications of Artificial Intelligence, Journal Year: 2023, Volume and Issue: 126, P. 106813 - 106813

Published: July 25, 2023

Language: Английский

Citations

46

Digital twin enabled real-time advanced control of TBM operation using deep learning methods DOI
Limao Zhang,

Guo Jing,

Xianlei Fu

et al.

Automation in Construction, Journal Year: 2023, Volume and Issue: 158, P. 105240 - 105240

Published: Dec. 21, 2023

Language: Английский

Citations

43

Human-Centered Interaction in Virtual Worlds: A New Era of Generative Artificial Intelligence and Metaverse DOI
Yuying Wang, Le Wang, Keng Siau

et al.

International Journal of Human-Computer Interaction, Journal Year: 2024, Volume and Issue: unknown, P. 1 - 43

Published: Feb. 27, 2024

The metaverse has emerged as an exciting new paradigm for human-computer interaction (HCI) and virtual collaboration. This paper presents a comprehensive review of the to address gap in existing literature where there is lack survey that reviews nature its building blocks from human-centric perspective. We first synthesize definition delineate key affordances. then introduce detailed framework encompassing metaverse's nature, infrastructure technologies, input/output technologies facilitate multi-sensory HCI, alongside applications across diverse domains. components within this are explained depth, offering insights into readiness level current technologies. Based on analysis, we outline major open challenges propose promising directions demanding further exploration investigation. By clarifying vision characterizing required realize it, provides essential serves invaluable resource developers researchers working advance transformative medium.

Language: Английский

Citations

31

Global insights on the impact of digital infrastructure on carbon emissions: A multidimensional analysis DOI
Shuai Che, Le Wen, Wang Jun

et al.

Journal of Environmental Management, Journal Year: 2024, Volume and Issue: 368, P. 122144 - 122144

Published: Aug. 11, 2024

Language: Английский

Citations

18

Digital twin for intelligent tunnel construction DOI
Tao Li, Xiaojun Li,

Yi Rui

et al.

Automation in Construction, Journal Year: 2023, Volume and Issue: 158, P. 105210 - 105210

Published: Nov. 30, 2023

Language: Английский

Citations

41

Data Fusion for Smart Civil Infrastructure Management: A Conceptual Digital Twin Framework DOI Creative Commons
Obaidullah Hakimi, Hexu Liu, Osama Abudayyeh

et al.

Buildings, Journal Year: 2023, Volume and Issue: 13(11), P. 2725 - 2725

Published: Oct. 29, 2023

Effective civil infrastructure management necessitates the utilization of timely data across entire asset lifecycle for condition assessment and predictive maintenance. A notable gap in current maintenance practices is reliance on single-source instead heterogeneous data, decreasing accuracy, reliability, adaptability, further effectiveness engineering decision-making. Data fusion thus demanded to transform low-dimensional decisions from individual sensors into high-dimensional ones decision optimization. In this context, digital twin (DT) technology set revolutionize industry by facilitating real-time processing informed However, data-driven smart using DT not yet achieved, especially terms fusion. This paper aims establish a conceptual framework harnessing with ensure efficiency infrastructures throughout their lifecycle. To achieve objective, systematic review 105 papers was conducted thematically analyze approaches frameworks management, including applications, core technologies, challenges. Several gaps are identified, such as difficulty integration due heterogeneity, seamless interoperability, difficulties associated quality, maintaining semantic features big technological limitations, complexities algorithm selection. Given these challenges, research proposed emphasizing multilayer fusion, open building information modeling (openBIM) geographic system (GIS) immersive visualization stakeholder engagement, adoption extended foundation classes (IFC)

Language: Английский

Citations

31

Visualization of structural health monitoring information using Internet-of-Things integrated with building information modeling DOI Creative Commons
M. Sakr, Ayan Sadhu

Journal of Infrastructure Intelligence and Resilience, Journal Year: 2023, Volume and Issue: 2(3), P. 100053 - 100053

Published: Aug. 15, 2023

Structural Health Monitoring (SHM) has become a paramount necessity in civil engineering for improving the operational performance of aging infrastructure. Recent monitoring techniques have utilized emerging technologies Industry 4.0, such as Internet Things, Big Data analytics, cloud computing, and cybersecurity, to automate SHM methodologies. However, they found challenges linking these developing an autonomous, well-established digital framework applications SHM. Visualizing processed data real-time interface generates multiple obstacles, witnessing delays transfer resorting offline tools manual processing. This paper, therefore, explores integration Building Information Modeling (BIM) Things (IoT) through Arduino micro-processing unit tracking visualizing from time frequency domains. Strategies enabling processing are developed while continuously acquiring structural responses. The query is established web-based database instead storing resources that await intervention. proposed methodology validated experimentally using two practical applications: dynamically moving vehicle over simply-supported bridge prototype randomly excited three-story model with visualization both time- frequency-domain information under undamaged damaged conditions. research develops early-phase Digital Twin (DT) present static dynamic rich-fed BIM database.

Language: Английский

Citations

28

Designing climate resilient energy systems in complex urban areas considering urban morphology: A technical review DOI Creative Commons
Kavan Javanroodi, A.T.D. Perera, Tianzhen Hong

et al.

Advances in Applied Energy, Journal Year: 2023, Volume and Issue: 12, P. 100155 - 100155

Published: Oct. 6, 2023

The urban energy infrastructure is facing a rising number of challenges due to climate change and rapid urbanization. In particular, the link between morphology systems has become increasingly crucial as cities continue expand more densely populated. Achieving neutrality adds another layer complexity, highlighting need address this relationship develop effective strategies for sustainable infrastructure. occurrence extreme events can also trigger cascading failures in system components, leading long-lasting blackouts. This review paper thoroughly explores incorporating into models through comprehensive literature proposes new framework enhance resilience interconnected systems. emphasizes integrated provide deeper insights design operation addresses failures, interconnectivity, compound impacts urbanization on It emerging opportunities, including requirement high-quality data, utilization big integration advanced technologies like artificial intelligence machine learning proposed integrates classification, mesoscale microscale process consider influence morphology, variability, events. Given prevalence climate-resilient strategies, study underscores significance improving accommodate future variations while recognizing interconnectivity within

Language: Английский

Citations

24

Digital Twin Models: Functions, Challenges, and Industry Applications DOI
Rakiba Rayhana, Ling Bai, Gaozhi Xiao

et al.

IEEE Journal of Radio Frequency Identification, Journal Year: 2024, Volume and Issue: 8, P. 282 - 321

Published: Jan. 1, 2024

In the rapidly evolving landscape of Industry 4.0, digital twins have emerged as a transformative technology across various industrial sectors. This paper presents comprehensive, in-depth review twin models in terms concept and evolution, fundamental components frameworks, existing based on their functionalities. The also discusses how are used/adopted different industries highlights challenges potential solutions to address current issues. aims provide researchers industry professionals with clear insight into unique benefits applications models. will help comprehend significance for specific purposes foster advancement state-of-the-art techniques this field.

Language: Английский

Citations

9

Modeling barriers to the adoption of metaverse in the construction industry: An application of fuzzy-DEMATEL approach DOI
Muhammad Irfan, Abishek Rauniyar, Jin Hu

et al.

Applied Soft Computing, Journal Year: 2024, Volume and Issue: unknown, P. 112180 - 112180

Published: Sept. 1, 2024

Language: Английский

Citations

9