Optimizing urban morphology: Evolutionary design and multi-objective optimization of thermal comfort and energy performance-based city forms for microclimate adaptation DOI
N.M. Castrejon-Esparza, M.E. González-Trevizo, K.E. Martínez-Torres

et al.

Energy and Buildings, Journal Year: 2025, Volume and Issue: unknown, P. 115750 - 115750

Published: April 1, 2025

Language: Английский

Stochastic optimization of energy systems configuration for nearly-zero energy buildings considering load uncertainties DOI
Qingwen Xue, Ao Wang, Sihang Jiang

et al.

Renewable Energy, Journal Year: 2025, Volume and Issue: unknown, P. 122610 - 122610

Published: Feb. 1, 2025

Language: Английский

Citations

0

Residential Building Renovation Considering Energy, Carbon Emissions, and Cost: An Approach Integrating Machine Learning and Evolutionary Generation DOI Creative Commons

Rudai Shan,

Wanyu Lai,

Huan Tang

et al.

Applied Sciences, Journal Year: 2025, Volume and Issue: 15(4), P. 1830 - 1830

Published: Feb. 11, 2025

As the dual carbon goals are being approached, there has been an increase in number of energy-saving renovation projects for existing buildings. However, building also brings about environmental impacts and incremental costs, which need to be addressed urgently. This study proposes integrated artificial intelligence framework facilitate multi-criteria energy decision making by combining a surrogate-based machine learning (ML) model evolutionary generative algorithm efficiently accurately identify optimal strategies. To enhance robustness methodology, comparative analysis four different ML models—light gradient boosting (LightGBM), fast random forest (FRF), multivariate linear regression (MVLR), neural network (ANN)—was conducted, with LightGBM demonstrating best performance terms accuracy, adaptability, efficiency. Using heuristic optimization entropy-weighted method, achieved average savings 56.62%, reduction emissions 51.60%, 24.27% decrease life-cycle costs. Compared local ultra-low-energy standards, solutions resulted 2.60% 15.85% demonstrates potential surrogate models, generation, methods retrofitting optimizations, offering novel, efficient, adaptable approach researchers practitioners seeking balance consumption, emissions, costs projects.

Language: Английский

Citations

0

Determination of Optimum Passive Design Parameters for Industrial Buildings in Different Climate Zones Using an Energy Performance Optimization Model Based on an Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) DOI Open Access
Gonca ÖZER

Sustainability, Journal Year: 2025, Volume and Issue: 17(6), P. 2357 - 2357

Published: March 7, 2025

With a focus on reducing building energy consumption, approaches that simultaneously optimize multiple passive design parameters in industrial buildings have received limited attention. Most existing studies tend to examine geometry or individual under scenarios, underscoring the potential benefits of adopting comprehensive, multiparameter approach integrates climate-responsive and sustainable strategies. This study bridges gap by systematically optimizing key parameters—building geometry, orientation, window-to-wall ratio (WWR), glazing type—to minimize loads enhance sustainability across five distinct climate zones. Fifteen different geometries with equal floor areas volumes were analyzed, considering fifteen types orientations varying 30° increments. DesignBuilder simulations yielded 16,900 results, due inherent challenges directly within simulation environments, data restructured reveal underlying relationships. An Energy Performance Optimization Model, based Particle Swarm (PSO) algorithm integrated an Artificial Neural Network (ANN), was developed identify optimal solutions tailored specific climatic conditions. The optimization results successfully determined combinations WWR, type reduce heating cooling loads, thereby promoting efficiency carbon emissions buildings. offers practical solution set provides architects actionable recommendations during early phase, establishing machine learning-based framework for achieving sustainable, energy-efficient, designs.

Language: Английский

Citations

0

A TOPSIS-XGBoost evaluation method for train-track-bridge system travelling safety based on probability density evolution theory and machine learning DOI

Zhehua Zhang,

Kun Wang, Jianfeng Mao

et al.

Structures, Journal Year: 2025, Volume and Issue: 74, P. 108614 - 108614

Published: March 7, 2025

Language: Английский

Citations

0

Optimizing office building performance in the HSWW region of China using simulation with Hyperopt CatBoost and SPEA2 DOI Creative Commons
Yiyang Huang,

Z.F. Yang W.T. He,

Yuchen Qin

et al.

Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)

Published: March 10, 2025

At present, the evaluation of comprehensive performance urban office buildings remains an area significant discussion. This research aims to optimize building in hot summer and warm winter (HSWW) region, focusing on three key aspects: energy use intensity (EUI), useful daylight illuminance (UDI), percentage thermal comfort (PTC). The study employs Hyperparameter Optimization (Hyperopt)-Categorical Boosting (CatBoost)-Strength Pareto Evolutionary Algorithm 2 (SPEA2) multi-objective optimization method, generating 3,000 datasets via Latin Hypercube Sampling (LHS). Building parameters are simulated using Ladybug Honeybee models, consumption levels predicted CatBoost model. Subsequently, Hyperopt is used hyperparameters, SPEA2 algorithm applied identify optimal solutions. results indicate that Hyperopt-CatBoost demonstrates excellent predictive performance, with R² values 0.996, 0.954, 0.985 for consumption, lighting, comfort, respectively. By (MOO) design parameters, reduced by 29.61%, lighting efficiency improves 59.61%, increases 37.69% compared original design. provides a systematic plan data support energy-saving design, improving enhancing renovation villages.

Language: Английский

Citations

0

Обоснование комбинации стандартных значений характеристик материалов слоев в составе ограждающей конструкции на основе квадратичной оптимизации DOI Creative Commons
Yanis Olekhnovich, Anton Radaev

Vestnik MGSU, Journal Year: 2025, Volume and Issue: 20(2), P. 193 - 214

Published: Feb. 28, 2025

Language: Русский

Citations

0

Enhancing Performance and Generalization in Dormitory Optimization Using Deep Reinforcement Learning with Embedded Surrogate Model DOI

Zhifei Shi,

Chen‐Yu Huang, Jinyu Wang

et al.

Building and Environment, Journal Year: 2025, Volume and Issue: unknown, P. 112864 - 112864

Published: March 1, 2025

Language: Английский

Citations

0

Design optimization of climate-responsive rural residences in solar rich areas considering sustainability and occupant comfort DOI

C.-J. Luo,

Feng Chi,

Huizhi Zhong

et al.

Energy and Buildings, Journal Year: 2025, Volume and Issue: 336, P. 115546 - 115546

Published: March 5, 2025

Language: Английский

Citations

0

Application of machine learning and genetic algorithms in environmental performance assessment and optimization of traditional Huizhou houses in China DOI Creative Commons
Zhixin Xu, Xiangfeng Li,

Chenhao Duan

et al.

Frontiers of Architectural Research, Journal Year: 2025, Volume and Issue: unknown

Published: March 1, 2025

Language: Английский

Citations

0

Optimizing Urban Block Morphology for Energy Efficiency and Photovoltaic Utilization: Case Study of Wuhan DOI Creative Commons

Ruoyao Wang,

Yanyan Huang, Guoliang Zhang

et al.

Buildings, Journal Year: 2025, Volume and Issue: 15(7), P. 1118 - 1118

Published: March 29, 2025

With global carbon emissions continuing to rise and urban energy demands growing steadily, understanding how block morphology impacts building photovoltaic (PV) efficiency consumption has become crucial for sustainable development climate change mitigation. Current research primarily focuses on individual optimization, while block-scale coupling relationships between PV utilization remain underexplored. This study developed an integrated prediction optimization tool using deep learning physical simulation assess design parameters (building morphology, orientation, layout) affect performance. Through a methodology combining modeling, potential assessment, simulation, the quantified parameters, utilization, consumption. Results demonstrate that appropriate forms layouts reduce shadow obstruction, enhance system capability, simultaneously improve reducing The provides improved accuracy, enabling planners scientifically maximize generation minimize use. Extensive experimental validation demonstrates model analytical methods proposed in this will help break through limitations of research, making PV-energy analysis at scale possible, providing scientific basis achieving low-carbon transformation sector.

Language: Английский

Citations

0