arXiv (Cornell University),
Journal Year:
2023,
Volume and Issue:
unknown
Published: Jan. 1, 2023
Large
language
models
(LLMs)
have
been
successfully
applied
to
software
engineering
tasks,
including
program
repair.
However,
their
application
in
search-based
techniques
such
as
Genetic
Improvement
(GI)
is
still
largely
unexplored.
In
this
paper,
we
evaluate
the
use
of
LLMs
mutation
operators
for
GI
improve
search
process.
We
expand
Gin
Java
toolkit
call
OpenAI's
API
generate
edits
JCodec
tool.
randomly
sample
space
using
5
different
edit
types.
find
that
number
patches
passing
unit
tests
up
75%
higher
with
LLM-based
than
standard
Insert
edits.
Further,
observe
found
are
generally
less
diverse
compared
ran
local
runtime
improvements.
Although
many
improving
by
LLM-enhanced
GI,
best
patch
was
GI.
Definitions
of
Artificial
Intelligence
(AI)
include
characterizing
algorithms
as
those
that:
thinking
humanly,
rationally,
acting
humanly
and
rationally.
On
the
one
hand,
Logic,
a
formal
framework,
allows
for
creation
capable
rationally
by
expressing
real
world
situations
in
language
that
enables
valid
rigorous
reasoning.
other
Large
Language
Models,
such
ChatGPT,
represent
especially
tasks
involving
understanding
generating
natural
text.
However,
these
models
can
exhibit
logical
reasoning
biases,
which
are
tendencies
impair
ability
to
reason
logically.
This
article
aims
identify
analyze
biases
exhibited
ChatGPT
comparison
Information
Technology
Undergraduate
Students,
beginners
Logic
course.
Foresight-Russia,
Journal Year:
2024,
Volume and Issue:
18(4), P. 67 - 76
Published: Dec. 9, 2024
Востребованность
генеративного
искусственного
интеллекта
(GenAI)
стремительно
растет
ввиду
способности
быстро
обрабатывать
масштабные
объемы
данных,
компилировать
их
и
транслировать
«общее
мнение».
Однако
дисбаланс
между
«компетенциями»
GenAI
препятствует
расширению
использования
этого
инструмента
для
решения
сложных
профессиональных
задач.
ИИ
работает
как
гигантский
накопитель
средство
воспроизводства
знаний,
однако
не
способен
интерпретировать
находить
правильное
применение
в
зависимости
от
контекста.
Сохраняется
критическая
вероятность
ошибки
при
генерации
ответов
даже
на
самые
простые
вопросы.
В
статье
оценивается
степень
значимости
ограничений,
присущих
GenAI.
Тестирование
лежащих
его
основе
языковых
моделей,
включая
новейшие
версии
—
GPT-4o1
GigaChat
MAX,
проводилось
с
помощью
авторского
набора
вопросов,
основанного
таксономии
Блума.
Установлено,
что
получения
правильного
ответа
практически
зависит
количества
параметров
настройки,
сложности
таксономии,
а
наличии
множественного
выбора
снижается.
Полученные
результаты
подтверждают
предположение
о
невозможности
применения
современных
инструментов
целях.
Предлагаются
опции,
способные
внести
значимый
вклад
достижение
минимум
квазипрофессионального
уровня.
Research Square (Research Square),
Journal Year:
2023,
Volume and Issue:
unknown
Published: Sept. 22, 2023
Abstract
We
delve
into
the
fascinating
crossroads
of
artificial
intelligence
(AI)
and
cognitive
science,
spotlighting
OpenAI
advanced
language
model,
ChatGPT.
Renowned
for
generating
human-like
text,
ChatGPT
has
been
widely
used
in
various
applications.
However,
its
ability
to
replicate
human
processes,
particularly
decision-making
behavior,
remains
largely
unexplored
untapped.
evaluate
ChatGPT's
patterns
show
that
they
strikingly
mirror
those
subjects,
even
traditionally
termed
''irrational''
under
standard
economic
theory.
This
finding
challenges
prevailing
assumption
AI
systems
operate
solely
on
rational
computations.
It
suggests
that,
despite
algorithmic
nature,
can
reflect
biases
when
simulating
roles,
thus
adding
a
new
dimension
our
understanding
behaviour.
Our
result
places
models
like
broader
context
indicating
their
potential
mimic
not
just
but
also
processes.
From
perspective,
findings
underscore
capacity
behavioral
research
stimulate
necessary
dialogue
design,
transparency,
ethical
implications.
study
bridges
machine
intelligence,
highlighting
enhance
processes
agents.
arXiv (Cornell University),
Journal Year:
2023,
Volume and Issue:
unknown
Published: Jan. 1, 2023
Large
language
models
(LLMs)
have
been
successfully
applied
to
software
engineering
tasks,
including
program
repair.
However,
their
application
in
search-based
techniques
such
as
Genetic
Improvement
(GI)
is
still
largely
unexplored.
In
this
paper,
we
evaluate
the
use
of
LLMs
mutation
operators
for
GI
improve
search
process.
We
expand
Gin
Java
toolkit
call
OpenAI's
API
generate
edits
JCodec
tool.
randomly
sample
space
using
5
different
edit
types.
find
that
number
patches
passing
unit
tests
up
75%
higher
with
LLM-based
than
standard
Insert
edits.
Further,
observe
found
are
generally
less
diverse
compared
ran
local
runtime
improvements.
Although
many
improving
by
LLM-enhanced
GI,
best
patch
was
GI.