Object classification and visualization with edge artificial intelligence for a customized camera trap platform
Ecological Informatics,
Journal Year:
2024,
Volume and Issue:
79, P. 102453 - 102453
Published: Jan. 2, 2024
The
camera
traps
have
revolutionized
the
image
and
video
capture
in
ecology
are
often
used
to
monitor
record
animal
presence.
With
miniaturization
of
low
power
electronic
devices,
better
battery
technologies,
software
advancements,
it
has
become
possible
use
edge
such
as
Raspberry
Pi
that
can
not
only
images
videos,
but
also
enable
sophisticated
processing,
off-site
communications.
These
developments
help
provide
near
real-time
insights
reduce
manual
processing
images.
on-board
classification
visualization
is
facilitated
by
advancements
Deep
Neural
Networks
(DNN),
transfer
learning
approaches,
libraries.
This
paper
provides
an
investigation
with
approaches
using
pre-trained
DNN
models,
visualizations
Explainable
Artificial
Intelligence
(XAI)
techniques
on
Zero
(RPi-Z)
device.
MobileNetV2
model
was
for
Florida-Part1
dataset
obtaining
results
precision,
recall,
F1-score
0.95,
0.96,
0.95
respectively.
We
compared
performance
MobileNetV2,
EfficientNetV2B0,
MobileViT
models
Extinction
best
0.97,
0.96
respectively,
obtained
EfficientNetV2B0
model.
Two
XAI
techniques,
Gradient-weighted-Class
Activation
Mapping
(Grad-CAM)
Occlusion
Sensitivity
were
through
heatmaps,
highlight
relative
importance
areas
contributing
model's
prediction,
understand
bias.
practical
case
scenarios
utilizing
optimization
deployment
ecological
research.
Language: Английский
Suivis de biodiversité par la reconnaissance automatique des espèces sur photographies : perspectives et défis
H. Le Borgne,
No information about this author
Christophe Bouget
No information about this author
Naturae,
Journal Year:
2023,
Volume and Issue:
6
Published: June 21, 2023
La
reconnaissance
d’espèces
basée
sur
des
données
d’images
analysées
par
l’intelligence
artificielle
est
de
plus
en
populaire
dans
les
suivis
biodiversité,
pour
faire
face
aux
limites
méthodes
traditionnelles
et
à
l’émergence
considérations
déontologiques
préconisant
le
développement
pièges
non
destructifs
(i.e.
létaux,
«
no
kill
»).
Cette
augmentation
l’utilisation
nouvelles
technologies
peut
largement
s’expliquer
un
besoin
gain
temps
précision.
Ce
type
méthodologie
particulièrement
intéressant
personnes
qui
n’ont
pas
l’expertise
nécessaire
distinguer
nombreuses
espèces
telles
que
Insectes.
De
plus,
photographiques
sont
moins
susceptibles
créer
biais
observateur
l’observation
directe,
car
elles
réutilisables
vérifiables.
Dans
ce
document
nous
allons
voir
comment
peuvent
être
acquises
milieu
terrestre
méthodologies
outils
capture)
la
manière
dont
images
ensuite
traitées
classification
gestion
analyses).
En
particulier,
avons
considéré
possibilité
d’automatiser
grands
volumes
collectées
l’aide
techniques
d’apprentissage
automatique
profond
afin
réaliser
l’identification
espèces.
étude
présente
également
avantages
ces
contexte
suivi
biodiversité
terrestre.
Animals and Land Cover/Land Use Change: A Remote Sensing—Galapagos Islands Assessment
Elsevier eBooks,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Jan. 1, 2024
Language: Английский
Simbiose entre inteligência artificial e câmeras em avaliações educacionais
Debates em educação,
Journal Year:
2024,
Volume and Issue:
16(38), P. e16694 - e16694
Published: June 26, 2024
Este
artigo
propõe
a
integração
de
inteligência
artificial
e
câmeras
vigilância
em
avaliações
educacionais,
visando
combater
crescente
trapaça
acadêmica.
A
pesquisa
explora
perspectiva
professores
estabelece
oito
diretrizes
éticas
para
o
uso
responsável
dessas
tecnologias.
O
monitoramento
inteligente
não
apenas
identifica
comportamentos
suspeitos,
mas
também
promove
equidade
transparência.
Estas
garantem
consentimento
informado,
proteção
da
privacidade
evitam
discriminações.
responsabilidade
institucional
assegura
uma
implementação
ética,
cultivando
cultura
honestidade
no
ambiente
educacional.
Yoga Pose Detection for Human Rehabilitation Using Deep Leaning
Prof. Moumita Dey
No information about this author
International Journal for Research in Applied Science and Engineering Technology,
Journal Year:
2023,
Volume and Issue:
11(12), P. 231 - 235
Published: Dec. 5, 2023
Abstract:
Yoga
is
an
ancient
science
and
discipline
originated
in
India
5000
years
ago.
It
used
to
bring
harmony
both
body
mind
with
the
help
of
asana,
meditation
various
other
breathing
techniques
peace
mind.
Due
increase
stress
modern
lifestyle,
yoga
has
become
popular
throughout
world.
There
are
ways
through
which
one
can
learn
yoga.
be
learnt
by
attending
classes
at
a
centre
or
home
tutoring.
also
self-learnt
books
videos.
Most
people
prefer
self-learning
but
it
hard
for
them
find
incorrect
parts
their
poses
themselves.
idea
behind
this
pose
detection
project
using
deep
learning
neural
network
that
popularity
increasing
day
because
its
benefits.
Doing
helps
us
physically,
mentally
as
well
spiritually.
Because
many
nowadays
doing
regularly.
The
main
recognize
they
technique.
involves
8
rungs
limbs
it,
includes
Yama,
Niyama,
Asana,
Pranayama,
Dharana,
Dhyana
Samadhi.
To
easily
understand
performing
via
images,
video
recording
classifying
we
implementing
will
incline
towards
more
get
identify
very
easily.
Language: Английский