A grey-box deep learning modelling strategy for fuel oil consumption prediction: A case study of tuna purse seiner
Ocean Engineering,
Journal Year:
2025,
Volume and Issue:
324, P. 120733 - 120733
Published: Feb. 24, 2025
Language: Английский
Yapay Zeka Uygulamalarının Mavi Yüzgeçli Orkinos (Thunnus Thynnus (Linnaeus, 1758))’un Avcılığı ve Yetiştiriciliği’nin Rolü
Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi,
Journal Year:
2025,
Volume and Issue:
11(1), P. 96 - 115
Published: March 28, 2025
Yapay
Zeka
(AI);
öğrenme,
problem
çözme
ve
karar
verme
gibi
tipik
olarak
insan
zekası
gerektiren
görevleri
yerine
getirebilen
bilgisayar
sistemlerinin
geliştirilmesi
uygulanması
anlamına
gelmektedir
son
yıllarda
birçok
sektörde
kullanımı
yaygınlaşmıştır.
zeka;
balık
yetiştiriciliğinde
büyümesi
sağlığının
anlaşılmasını
yönetimini
önemli
ölçüde
artırabilecek
gerçek
zamanlı
izleme,
veri
analitiği,
tahmine
dayalı
modelleme
destek
sistemleri
için
fırsatlar
sunmaktadır.
zekanın
orkinos
avcılığı
et
kalitesinin
belirlenmesinde
de
kullanılmaya
başlandığı
görülmektedir.
Ton
balığının
kalitesini
değerlendiren
bir
AI
sistemi
olan
TUNA
SCOPE,
Cermaq
Umitron
Corporation
şirketlerin
sağlığını
refahını
iyileştirmek
çeşitli
girişimlerde
bulundukları
AI'nın
su
ürünleri
yetiştiriciliğine
entegrasyonunun,
işgücü
maliyetlerini
çevresel
etkileri
azaltırken
verimliliği
artıran
odaklı
kararlara
olanak
tanıyarak
sürdürülebilir
uygulamalarda
devrim
yaratması
beklenmektedir.
Çalışmamızın
amacı;
yapay
zeka
kullanımı,
balıkçılık
yetiştiriciliğindeki
orkinoslarda
ile
ilgili
yapılmış
çalışmaların
detaylı
şekilde
incelenerek
sunmak
ileride
yapılacak
uygulamaları
alt
yapı
oluşturmaktır.
Marine Ecosystem Monitoring Based on Remote Sensing Using Underwater Image Analysis for Biodiversity Conservation Model
Remote Sensing in Earth Systems Sciences,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Sept. 16, 2024
Language: Английский
Machine Learning Applications for Fisheries—At Scales from Genomics to Ecosystems
Reviews in Fisheries Science & Aquaculture,
Journal Year:
2024,
Volume and Issue:
unknown, P. 1 - 24
Published: Nov. 9, 2024
Fisheries
science
aims
to
understand
and
manage
marine
natural
resources.
It
relies
on
resource-intensive
sampling
data
analysis.
Within
this
context,
the
emergence
of
machine
learning
(ML)
systems
holds
significant
promise
for
understanding
disparate
components
these
ecosystems
gaining
a
greater
their
dynamics.
The
goal
paper
is
present
review
ML
applications
in
fisheries
science.
highlights
both
advantages
over
conventional
approaches
drawbacks,
particularly
terms
operationality
possible
robustness
issues.
This
organized
from
small
large
scales.
begins
with
genomics
subsequently
expands
individuals
(catch
items),
aggregations
different
species
situ,
on-board
processing,
stock/populations
assessment
dynamics,
spatial
mapping,
fishing-related
organizational
units,
finally
ecosystem
Each
field
has
its
own
set
challenges,
such
as
pre-processing
steps,
quantity
quality
training
data,
necessity
appropriate
model
validation,
knowing
where
algorithms
are
more
limited,
we
discuss
some
discipline-specific
challenges.
scope
discussion
applied
methods
ranges
statistical
data-specific
that
use
higher
level
semantics.
concludes
potential
implications
management
decisions
summary
benefits
challenges
using
techniques
fisheries.
Language: Английский
Fishing vessels as met-ocean data collection platforms: data lifecycle from acquisition to sharing
Frontiers in Marine Science,
Journal Year:
2024,
Volume and Issue:
11
Published: Dec. 20, 2024
The
collection
of
meteorological
and
oceanographic
(met-ocean)
data
is
essential
to
advance
knowledge
the
state
oceans,
leading
better-informed
decisions.
Despite
technological
advances
increase
in
recent
years,
met-ocean
still
not
trivial
as
it
requires
a
high
effort
cost.
In
this
context,
resulting
from
commercial
activities
increasingly
complement
existing
scientific
collections
vast
ocean.
Commercial
fishing
vessels
(herein
vessels)
are
an
example
observing
platforms
for
collection,
providing
valuable
additional
temporal
spatial
coverage,
particularly
regions
often
covered
by
platforms.
These
could
contribute
Global
Ocean
Observing
System
(GOOS)
with
Essential
Variables
(EOV)
provided
that
accessibility
manageability
created
datasets
guaranteed
adhering
FAIR
principles,
reproducible
uncertainty
included
datasets.
Like
other
industrial
activities,
fisheries
sometimes
reluctant
share
their
data,
thus
anonymization
techniques,
well
license
access
restrictions
help
foster
collaboration
between
them
community.
main
aim
article
guide,
practical
point
view,
how
create
highly
vessel
observations
towards
establishing
new
First,
principles
presented
comprehensively
described,
context
later
implementation.
Then,
lifecycle
three
showcased
case
studies
illustrate
steps
be
followed.
It
starts
acquisition
follows
quality
control,
processing
validation
which
shows
good
general
performance
therefore
further
reassures
potential
next
making
possible,
richly
documenting
standardized
convention-based
vocabularies,
metadata
format.
Subsequently,
submitted
widely
used
repositories
while
persistent
identifier
also
assigned.
Finally,
take-home
messages
lessons
learned
they
useful
dataset
creators.
Language: Английский