Comparison of Machine Learning and Geostatistical Methods on Mapping Soil Organic Carbon Density in Regional Croplands and Visualizing Its Location‐Specific Dominators via Interpretable Model DOI Open Access
Bifeng Hu,

Yibo Geng,

Yi Lin

et al.

Land Degradation and Development, Journal Year: 2025, Volume and Issue: unknown

Published: March 17, 2025

ABSTRACT High‐precision soil organic carbon density (SOCD) map is significant for understanding ecosystem cycles and estimating storage. However, the current mapping methods are difficult to balance accuracy interpretability, which brings great challenges of SOCD. In present research, a total 6223 samples were collected, along with data pertaining 30 environmental covariates, from agricultural land located in Poyang Lake Plain Jiangxi Province, southern China. Furthermore, ordinary kriging (OK), geographically weighted regression (GWR), random forest (RF), empirical Bayesian (EBK), three hybrid models (RF‐OK, RF‐EBK, RF‐GWR), constructed. These used SOCD (soil density) study region high resolution m. After that, shapley additive explanations (SHAP) quantify global contribution spatially identify dominant factors that influence variation. The outcomes suggested compared single geostatistics model model, RF method emerged as most effective predictive showcasing superior performance (coefficient determination ( R 2 ) = 0.44, root mean squared error (RMSE) 0.61 kg m −2 , Lin's concordance coefficient (LCCC) 0.58). Using SHAP, we found properties contributed prediction (81.67%). At pixel level, nitrogen dominated 50.33% farmland, followed by parent material (8.11%), available silicon (8.00%), annual precipitation (5.71%), remaining variables accounted less than 5.50%. summary, our offered valuable enlightenment toward achieving between interpretability digital mapping, deepened spatial variation farmland

Language: Английский

Correcting forest aboveground biomass biases by incorporating independent canopy height retrieval with conventional machine learning models using GEDI and ICESat-2 data DOI Creative Commons
Biao Zhang, Zhichao Wang, Tiantian Ma

et al.

Ecological Informatics, Journal Year: 2025, Volume and Issue: unknown, P. 103045 - 103045

Published: Jan. 1, 2025

Language: Английский

Citations

1

Prediction of some soil properties in volcanic soils using random forest modeling: A case study at chinyero special nature reserve (Tenerife, canary islands) DOI Creative Commons
Víctor M. Jiménez, Jesús Santiago Notario del Pino,

José Manuel Fernández-Guisuraga

et al.

Ecological Informatics, Journal Year: 2025, Volume and Issue: 86, P. 103054 - 103054

Published: Jan. 29, 2025

Language: Английский

Citations

0

Improved digital mapping of soil texture using the kernel temperature–vegetation dryness index and adaptive boosting DOI Creative Commons

Xu Zhai,

Yuzhong Liu,

Yuanyuan Hong

et al.

Ecological Informatics, Journal Year: 2025, Volume and Issue: 87, P. 103083 - 103083

Published: Feb. 18, 2025

Language: Английский

Citations

0

Comparison of Machine Learning and Geostatistical Methods on Mapping Soil Organic Carbon Density in Regional Croplands and Visualizing Its Location‐Specific Dominators via Interpretable Model DOI Open Access
Bifeng Hu,

Yibo Geng,

Yi Lin

et al.

Land Degradation and Development, Journal Year: 2025, Volume and Issue: unknown

Published: March 17, 2025

ABSTRACT High‐precision soil organic carbon density (SOCD) map is significant for understanding ecosystem cycles and estimating storage. However, the current mapping methods are difficult to balance accuracy interpretability, which brings great challenges of SOCD. In present research, a total 6223 samples were collected, along with data pertaining 30 environmental covariates, from agricultural land located in Poyang Lake Plain Jiangxi Province, southern China. Furthermore, ordinary kriging (OK), geographically weighted regression (GWR), random forest (RF), empirical Bayesian (EBK), three hybrid models (RF‐OK, RF‐EBK, RF‐GWR), constructed. These used SOCD (soil density) study region high resolution m. After that, shapley additive explanations (SHAP) quantify global contribution spatially identify dominant factors that influence variation. The outcomes suggested compared single geostatistics model model, RF method emerged as most effective predictive showcasing superior performance (coefficient determination ( R 2 ) = 0.44, root mean squared error (RMSE) 0.61 kg m −2 , Lin's concordance coefficient (LCCC) 0.58). Using SHAP, we found properties contributed prediction (81.67%). At pixel level, nitrogen dominated 50.33% farmland, followed by parent material (8.11%), available silicon (8.00%), annual precipitation (5.71%), remaining variables accounted less than 5.50%. summary, our offered valuable enlightenment toward achieving between interpretability digital mapping, deepened spatial variation farmland

Language: Английский

Citations

0