Research Square (Research Square), Journal Year: 2025, Volume and Issue: unknown
Published: April 23, 2025
Language: Английский
Research Square (Research Square), Journal Year: 2025, Volume and Issue: unknown
Published: April 23, 2025
Language: Английский
Applied Energy, Journal Year: 2024, Volume and Issue: 377, P. 124631 - 124631
Published: Oct. 10, 2024
Language: Английский
Citations
7Bioagro, Journal Year: 2025, Volume and Issue: 37(1), P. 123 - 134
Published: Jan. 1, 2025
La fresa (Fragaria x ananassa) es una especie vegetal de gran importancia económica y agroalimentaria, que se cultiva en regiones agroindustriales México, como el Bajío. El principal insumo la producción agrícola son las plantas, cuya primera etapa multiplicación empieza con formación clones por cultivo in vitro a partir plantas madre seleccionadas. Sin embargo, diversas características regeneradas pueden presentar variaciones reducen su valor agronómico comercial. Dicha variabilidad debida múltiples factores, aunque destaca efecto tienen combinaciones auxinas citocininas, así sus concentraciones. objetivo del presente estudio fue evaluar mediante organogénesis directa ante diferentes concentraciones citocininas. Los explantes obtuvieron meristemos apicales los estolones variedad Camino Real. Se utilizaron 21 tratamientos (AIB 2,4-D) citocininas (BAP cinetina) para organogénesis. mayor número vitroplantas obtuvo combinación AIB BAP 0,4 mg·L-1, tasa regeneración promedio 68,3 %. En dicho tratamiento presentaron mejor desarrollo alta respuesta antioxidante. concentración prolina 1,7 µg mL-1, control sin ni
Citations
0Journal of Image and Signal Processing, Journal Year: 2025, Volume and Issue: 14(01), P. 45 - 61
Published: Jan. 1, 2025
Language: Английский
Citations
0Energies, Journal Year: 2025, Volume and Issue: 18(3), P. 625 - 625
Published: Jan. 29, 2025
The comprehensive change from known, classical energy production methods to the increased use of renewable requires new in field efficient application and energy. urban supply presents complex challenges improving efficiency; therefore, prediction dynamical availability is required. Several approaches have been explored, including statistical models machine learning using historical data numerical weather mathematical atmosphere conditions. Accurately forecasting involves analyzing factors such as related conditions, conversion systems, their locations, which influence both yield. This study focuses on short-term wind photovoltaic (PV) approaches, aiming for accurate 8 h predictions. goal develop capable producing forecasts resources (solar wind), suitable later a model predictive control scheme where generation demand, well storage, must be considered together. Methods include regression trees, support vector regression, neural networks. main idea this work past future information model. Inputs PV are solar irradiance, while uses speed data. performance evaluated over entire year. Two scenarios tested: one with perfect predictions another realistic situation not possible, uncertain accounted by incorporating noise models. results second scenario were further improved output filtering method. shows advantages disadvantages different methods, accuracy that can expected principle. show network has best predicting compared other an RMSE 0.1809 5.3154 wind, Pearson coefficient 0.9455 0.9632 wind.
Language: Английский
Citations
0Energy Reports, Journal Year: 2025, Volume and Issue: 13, P. 3616 - 3630
Published: March 22, 2025
Language: Английский
Citations
0Published: Jan. 1, 2025
Language: Английский
Citations
0Research Square (Research Square), Journal Year: 2025, Volume and Issue: unknown
Published: April 23, 2025
Language: Английский
Citations
0