Energy and Buildings, Journal Year: 2024, Volume and Issue: 329, P. 115220 - 115220
Published: Dec. 25, 2024
Language: Английский
Energy and Buildings, Journal Year: 2024, Volume and Issue: 329, P. 115220 - 115220
Published: Dec. 25, 2024
Language: Английский
Journal of Manufacturing Systems, Journal Year: 2024, Volume and Issue: 74, P. 83 - 99
Published: March 8, 2024
Language: Английский
Citations
18Energy, Journal Year: 2024, Volume and Issue: 291, P. 130347 - 130347
Published: Jan. 17, 2024
Language: Английский
Citations
12Energy, Journal Year: 2023, Volume and Issue: 289, P. 129866 - 129866
Published: Dec. 6, 2023
District heating (DH) load forecasting for buildings and cities is essential DH production planning demand-side management. This study analyzes compares the hourly patterns a city five different types of over an entire year. The various operating modes introduce nonlinear dependencies between outdoor temperature. We compare prediction accuracies multiple linear regression (MLR) artificial neural network (ANN) models. Without dependencies, both ANN MLR provide good, almost identical accuracies. In case superior to MLR. However, novel clustering method eliminates improves accuracy on par with ANN. methods can automatically adapt nonlinearities. advantage combining that it simpler than designing method, although manual work required. addition, more insight into how depends factors compared 'black box' developed methodology be widely applied building- city-level analyses in systems combined or without domestic hot water consumption.
Language: Английский
Citations
17Energy and AI, Journal Year: 2024, Volume and Issue: 16, P. 100343 - 100343
Published: Jan. 24, 2024
Accurate short-term forecasting of heating energy demand is needed for achieving optimal building management, cost savings, environmental sustainability, and responsible consumption. Furthermore, prediction contributes to zero-energy performance in cold climates. Given the critical importance this study evaluated six prevalent deep-learning algorithms predict load, including single hybrid models. The overall best-performing predictors were models using Convolutional Neural Networks, regardless whether they multivariate or univariate. Nevertheless, while performed better first hour, univariate often more accurate final 24 hours. Thus, predictor timestep was a Network-Recurrent Network model with coefficient determination (R²) 0.98 lowest mean absolute error. Yet, Network-Long Short-Term Memory an R² 0.80. Also, accuracy reduced faster per hour compared These findings suggest that may be suited early predictions, later time steps. Hence, combining can enhance at various timesteps high fidelity offering comprehensive tool management.
Language: Английский
Citations
8Computers & Electrical Engineering, Journal Year: 2024, Volume and Issue: 119, P. 109631 - 109631
Published: Sept. 3, 2024
Language: Английский
Citations
5Energy, Journal Year: 2023, Volume and Issue: 288, P. 129726 - 129726
Published: Dec. 1, 2023
Language: Английский
Citations
13Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Journal Year: 2025, Volume and Issue: 56, P. 147 - 161
Published: April 30, 2025
Bu çalışmanın temel amacı, Emlak Konut Gayrimenkul Yatırım Ortaklığı (EKGYO) hisse senedi fiyatlarını tahmin etmek amacıyla sektörel veriler ve gelişmiş makine öğrenimi modellerini kullanmaktır. EKGYO fiyatları ile makroekonomik göstergeler arasındaki güçlü korelasyonlar, genel ekonomik şartların gayrimenkul sektörünün finansal performansı üzerindeki etkilerini gözler önüne sermektedir. Çalışmada, USD/TL kuru, konut fiyat endeksi, yurt içi üretici endeksi (Yİ-ÜFE) ipotekli satışları gibi önemli incelenmiş bu ilişki detaylı bir şekilde analiz edilmiştir. Ampirik bulgular, Kalman Filtresi modelinin en düşük ortalama mutlak hata (MAE), kare (MSE) kök (RMSE) değerleri yüksek doğruluğunu sağladığını göstermektedir. durum, verilerdeki dalgalanmaları yönetebilme doğru tahminler sunabilme potansiyelini ortaya koymaktadır. karşılaştırıldığında biraz daha oranlarına sahip olmasına rağmen ETS de iyi performans sergilediği görülmüştür. Buna karşın, Neural Prophet modeli, mevsimsellik trendleri yakalamaya yönelik tasarımına rağmen, karmaşık veri setlerinde veya kısa vadeli tahminlerde bazı sınırlamaları işaret eden sahiptir.
Citations
0Expert Systems with Applications, Journal Year: 2024, Volume and Issue: 254, P. 124487 - 124487
Published: June 13, 2024
Language: Английский
Citations
3Process Safety and Environmental Protection, Journal Year: 2025, Volume and Issue: unknown, P. 106845 - 106845
Published: Jan. 1, 2025
Language: Английский
Citations
0Applied Soft Computing, Journal Year: 2025, Volume and Issue: unknown, P. 113193 - 113193
Published: May 1, 2025
Language: Английский
Citations
0