Development of land use regression models to characterise spatial patterns of particulate matter and ozone in urban areas of Lanzhou DOI Creative Commons
Tian Zhou,

Shuya Fang,

Limei Jin

et al.

Urban Climate, Journal Year: 2024, Volume and Issue: 55, P. 101879 - 101879

Published: April 4, 2024

There are still many challenges in Land use regression (LUR) application cities China due to insufficient air pollutants data. In this study, the LUR models of TSP, PM10, PM4, PM2.5, PM1, and O3 developed by basing on mobile monitoring 2019 Lanzhou, China. Our results show that adjusted-R2 six best rang 0.45⁓0.87. Referring adjusted-R2, differences cross-validation-R2 (CV-R2) using training data less than 9% excluding CV-R2 test within 19% O3. Overall, more robust PM1. The model has a good fit. spatial patterns PMs exhibit high concentration west, center east area, being higher south north. predicted concentrations decrease from west east. All indicate there highest level largest area Xigu Distinct. These can provide scientific for urban planning, land regulation, prevention control pollution.

Language: Английский

Development and evaluation of rapid, national-scale outdoor air pollution modelling and exposure assessment: Hybrid air dispersion exposure system (HADES) DOI Creative Commons
Calvin Jephcote, John S. Gulliver

Environment International, Journal Year: 2025, Volume and Issue: unknown, P. 109304 - 109304

Published: Jan. 1, 2025

Improvements in computer processing power are facilitating the development of more detailed environmental models with greater geographical coverage. We developed a national-scale model outdoor air pollution (Hybrid Air Dispersion Exposure System - HADES) for rapid production concentration maps nitrogen dioxide (NO2) and ozone (O3) at very high spatial resolution (10m). The combines dispersion modelling satellite-derived estimates background concentrations, land cover, 3-D representation buildings, statistical calibration framework. an emissions inventory covering England Wales to implement tested its performance using data years 2018-2019 from fixed-site monitoring locations. In 10,000 Monte Carlo cross-validation iterations, hourly-annual average R2 values NO2 were 0.77-0.79 (RMSE: root mean squared error 5.3-5.7 µg/m3), 0.87-0.89 O3 (RMSE = 3.6-3.8 µg/m3) 95% confidence interval. annual was 0.80 4.9 0.86 3.2 aggregating estimates. surfaces freely available non-commercial use. these exposure assessment, all residential locations, neighbourhoods urban areas, unlikely be below 2021 World Health Organisation Quality Guidelines threshold (10 concentrations µg/m3). Rural suburban areas likely exceed peak-season 8-hour daily maximum (60

Language: Английский

Citations

0

Traffic noise assessment in urban Bulgaria using explainable machine learning DOI Creative Commons
Marco Helbich,

Julian Hagenauer,

Angel Burov

et al.

Sustainable Cities and Society, Journal Year: 2025, Volume and Issue: unknown, P. 106169 - 106169

Published: Jan. 1, 2025

Language: Английский

Citations

0

Machine learning-based analysis of workers' exposure and detection to volatile organic compounds (VOC) DOI
Abdelrahman Eid,

Shehdeh Jodeh,

A. Chakir

et al.

International Journal of Environmental Science and Technology, Journal Year: 2025, Volume and Issue: unknown

Published: Feb. 25, 2025

Language: Английский

Citations

0

Urban forests and public health: Analyzing the role of citizen perceptions in their conservation intentions DOI Creative Commons
Rahim Maleknia

City and Environment Interactions, Journal Year: 2025, Volume and Issue: unknown, P. 100189 - 100189

Published: Feb. 1, 2025

Language: Английский

Citations

0

Advancing air pollution exposure assessment model: challenges and future perspectives DOI Open Access
Bin Han, Jia Xu, Kai Zhang

et al.

Journal of Environmental Exposure Assessment, Journal Year: 2025, Volume and Issue: 4(1)

Published: March 3, 2025

In recent years, air pollution exposure assessment models have experienced significant advancements, particularly in integrating advanced technologies. However, the intrinsic deficiency of geostatistical model existing studies restricted further development model. this perspective, we summarized several emerging technologies that can overcome limitations and estimate exposures with high spatial temporal resolutions. As these evolve, they are expected to play an increasingly role improving public health managing environmental challenges.

Language: Английский

Citations

0

Impact of land use characteristics on air pollutant concentrations considering the spatial range of influence DOI
Gunwon Lee, Han Yuhan, Geunhan Kim

et al.

Atmospheric Pollution Research, Journal Year: 2025, Volume and Issue: unknown, P. 102498 - 102498

Published: March 1, 2025

Language: Английский

Citations

0

Tracking diurnal variation of NO2 at high spatial resolution in China using a time-constrained machine learning model DOI
Sicong He,

Yanbin Yuan,

Zhen Li

et al.

International Journal of Applied Earth Observation and Geoinformation, Journal Year: 2025, Volume and Issue: 138, P. 104470 - 104470

Published: March 11, 2025

Language: Английский

Citations

0

Principal component regression approach for measuring the impact of built environment variables on multiple air pollutants in Delhi DOI Creative Commons
Deepty Jain, Smriti Bhatnagar, V. Rathi

et al.

Discover Atmosphere, Journal Year: 2025, Volume and Issue: 3(1)

Published: March 11, 2025

Language: Английский

Citations

0

Evaluación de la exposición de largo plazo al material particulado fino (PM2.5) en el estudio de la cohorte MEDELLIN DOI Creative Commons
Juan Gabriel Piñeros, Sara Catalina Grisales-Vargas, Santiago Mejía-Osorio

et al.

Revista de la Escuela Nacional de Salud Pública, Journal Year: 2025, Volume and Issue: 43

Published: Jan. 1, 2025

Objetivo: Estimar la variabilidad del pm2.5 durante 2018-2019 en el área urbana de Medellín diferentes escalas geográficas. Métodos: Se aplicó metodología regresión usos suelo (lur), considerando como variable dependiente concentración promedio anual las estaciones monitoreo y cercanas; se definieron áreas influencia o buffers circulares con radios 100, 150, 200, 300 500 m, centro coordenadas cada sitio monitoreo; buffer construyeron modelos espaciales eligió mayor rendimiento. Resultados: Los seleccionados para los años 2018 2019 explican entre 40 46 % pm2.5, errores concentraciones previstas 1,64 2,18 µg/m3, respectivamente. La distribución contaminante fue heterogénea a nivel barrios manzanas. Las mayores anuales localizaron hacia franja central ciudad, circundantes río Medellín, marcadas al sur centro. Mientras que estimaron superiores 15 µg/m3 21 manzanas, 2019, total estimaciones estuvo por encima esta concentración. Conclusión: evalúa exposición medio año, predominaron variables explicativas uso tráfico. niveles inferiores 25 escalas, una baja permitió asignación exposiciones individuales largo plazo residencia participantes proyecto.

Citations

0

Air pollution mapping and variability over five European cities DOI Creative Commons
Karine Sartelet, Jules Kerckhoffs, Eleni Athanasopoulou

et al.

Environment International, Journal Year: 2025, Volume and Issue: 199, P. 109474 - 109474

Published: April 15, 2025

Mapping urban pollution is essential for assessing population exposure and addressing associated health impacts. High concentrations are due to the proximity of sources such as traffic or residential heating, density with presence buildings that reduce street ventilation. This complexity makes fine-scale mapping challenging, even regulated pollutants NO2 PM2.5. In this study we apply state-of-the-art empirical deterministic modeling approaches produce high-resolution (<100 m) maps across five European cities (Paris, Athens, Birmingham, Rotterdam, Bucharest). These methodologies enable full-city capturing intra-urban gradients concentrations. Depending on methodology, (NO2, PM2.5) and/or emerging (black carbon (BC) ultrafine particles (UFP characterized here by particulate number concentration PNC)) considered. For modelling, different presented: a multi-scale Eulerian modelling chain down scale chemistry/aerosol dynamics at all scales, hybrid models regional dispersion Gaussian subgrid dispersion, Gaussian-based model. Empirical land use regression were developed based upon mobile monitoring. To compare relative performance evaluate their limitations, results compared fixed measurement stations. We introduce standardized metric quantify spatial seasonal variability assess each method's capacity reproduce heterogeneity. also how data assimilation affects both accuracy representation-particularly relevant where sparse. confirm established patterns: more pronounced PNC, BC than PM2.5, higher during winter periods. observe reduced in PM2. 5 (linked heating) significant wood burning emissions. adds unique value evaluating these patterns using stations, quantifying them entire areas very fine resolution m). Furthermore, important methodological strengths limitations pointed out, providing practical guidance selection improvement methods, supporting implementation new EU Air Quality Directive.

Language: Английский

Citations

0