Tendencias temporales en la cobertura vegetal de la Cuenca Ramis: Generación de Índices espectrales mediante Google Earth Engine DOI Creative Commons
José Antonio Mamani Gómez, José Anderson do Nascimento Batista

Labor & Engenho, Journal Year: 2024, Volume and Issue: 18, P. e024016 - e024016

Published: Dec. 26, 2024

El estudio se centró en analizar la distribución y evolución de vegetación cuenca Ramis durante el período 1984 a 2021, utilizando datos índices como NDVI ARVI. Se emplearon herramientas Plataforma Google Earth Engine (GEE) para procesamiento imágenes satelitales Landsat software R Studio realizar análisis tendencias no paramétricas mediante método Mann Kendall. Los resultados muestran una serie patrones significativos lo largo las décadas estudiadas. observa un aumento constante áreas sin vegetación, que podría estar relacionado con procesos desertificación o degradación del suelo. Por otro lado, evidencia disminución cobertura escasa, posiblemente asociada actividades humanas expansión agrícola urbanización. Sin embargo, destaca progresivo densa muy densa, indicando posibles esfuerzos reforestación recuperación boscosas, así éxitos medidas conservación regeneración natural. Estos hallazgos resaltan importancia continuar monitoreando gestionando adecuadamente los recursos naturales garantizar su plazo. Además, compararon obtenidos través observó proporcionó mejor representación espacial mostró mayor sensibilidad cantidad clorofila, siendo útil evaluar densidad vegetación. ARVI más adecuados terreno variado compleja, aunque fue limitada.

Leveraging Machine Learning for Analyzing the Nexus Between Land Use and Land Cover Change, Land Surface Temperature And Biophysical Indices in an Eco-Sensitive Region of Brahmani-Dwarka Interfluve DOI Creative Commons
Bhaskar Mandal

Results in Engineering, Journal Year: 2024, Volume and Issue: unknown, P. 102854 - 102854

Published: Sept. 1, 2024

Language: Английский

Citations

6

Deep Learning Methods of Satellite Image Processing for Monitoring of Flood Dynamics in the Ganges Delta, Bangladesh DOI Open Access
Polina Lemenkova

Water, Journal Year: 2024, Volume and Issue: 16(8), P. 1141 - 1141

Published: April 17, 2024

Mapping spatial data is essential for the monitoring of flooded areas, prognosis hazards and prevention flood risks. The Ganges River Delta, Bangladesh, world’s largest river delta prone to floods that impact social–natural systems through losses lives damage infrastructure landscapes. Millions people living in this region are vulnerable repetitive due exposure, high susceptibility low resilience. Cumulative effects monsoon climate, rainfall, tropical cyclones hydrogeologic setting Delta increase probability floods. While engineering methods mitigation include practical solutions (technical construction dams, bridges hydraulic drains), regulation traffic land planning support systems, geoinformation rely on modelling remote sensing (RS) evaluate dynamics hazards. Geoinformation indispensable mapping catchments areas visualization affected regions real-time monitoring, addition implementing developing emergency plans vulnerability assessment warning supported by RS data. In regard, study used monitor southern segment Delta. Multispectral Landsat 8-9 OLI/TIRS satellite images were evaluated (March) post-flood (November) periods analysis extent landscape changes. Deep Learning (DL) algorithms GRASS GIS modules qualitative quantitative as advanced image processing. results constitute a series maps based classified

Language: Английский

Citations

5

Deriving forest cover rates from map sources: A contribution to official statistics and environmental reporting DOI
Alessia D’Agata, Piermaria Corona, Luca Salvati

et al.

Environmental Impact Assessment Review, Journal Year: 2025, Volume and Issue: 114, P. 107920 - 107920

Published: March 20, 2025

Language: Английский

Citations

0

Urban Growth Dynamics in the New Capital of North Maluku: A Spatiotemporal Perspective on Land Cover Transformation in Sofifi DOI Creative Commons

M. Fadel Aginda,

Hayati Sari Hasibuan, Rudy Parluhutan Tambunan

et al.

Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), Journal Year: 2025, Volume and Issue: 15(3), P. 378 - 378

Published: April 14, 2025

The transition of North Maluku Province's capital city from Ternate to Sofifi in Halmahera Island is expected spawn a new growth center. However, the development and expansion urban areas reflect significant land cover transformation. This process shaped by complex interactions influenced island’s geographical context limited environmental carrying capacity. To ensure sustainability dynamics Sofifi, this study aims (1) identify analyze spatiotemporal transformation 1995 2020 (2) pattern Sofifi. employed multitemporal Landsat imageries within period with supervised classification using CaRT classifier Google Earth Engine NDBI maps calculate rate intensity index. analysis shows rapid vegetation into built-up areas, especially 2010–2015 periods, which gradually developed coastal towards inland following road networks government offices. spatial index average about 28.61%. reveals that shifting area 967 hectares (27.61% Area) 1990 2020. Parallelly, happens stages. Moreover, research advances understanding how happened island cities, particularly Indonesian context.

Language: Английский

Citations

0

Evaluation of future land use change impacts on soil erosion for holota watershed, Ethiopia DOI Creative Commons

Abebe Chala Guder,

Worku Firomsa Kabeta

Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)

Published: Feb. 25, 2025

Soil erosion is a critical global challenge that degrades land and water resources, leading to reduced soil fertility, pollution of bodies, sedimentation in hydraulic structures reservoirs. In Ethiopia, where agriculture forms the backbone economy, unplanned LULC changes have intensified erosion, posing significant threat food security sustainable development. Holota watershed rapid population growth urbanization accelerated use cover (LULC) changes, significantly affecting patterns. This study aims assess spatiotemporal their impact on from 2000 2050. Using Landsat imagery 2000, 2010, 2020, supervised classification with maximum likelihood algorithm was applied Google Earth Engine (GEE) map five classes: forest, cropland, built-up areas, shrubland, grassland. The future for 2050 predicted using CA–Markov chain model. 2020 maps estimated Revised Universal Loss Equation (RUSLE). Results indicate annual loss 13.3 t ha − 1 yr increasing 15.9 by Cropland, grassland are expected be major contributors while forest shrubland likely play mitigating role. novelty this research lies its integration cutting-edge remote sensing technologies, such as GEE CA-Markov model, predict combined data-scarce region, providing actionable insights conservation planning Ethiopian highlands. These findings offer essential guidance planners implement management practices aimed at reducing including promoting restoration, adopting contour farming, enforcing regulations limit expansion cropland areas erosion-prone zones.

Language: Английский

Citations

0

State-of-the-Art Status of Google Earth Engine (GEE) Application in Land and Water Resource Management: A Scientometric Analysis DOI

Nishtha Sharnagat,

A.K. Nema,

P. K. Mishra

et al.

Journal of Geovisualization and Spatial Analysis, Journal Year: 2025, Volume and Issue: 9(1)

Published: Feb. 26, 2025

Language: Английский

Citations

0

Comparison of random forest, gradient tree boosting, and classification and regression trees for mangrove cover change monitoring using Landsat imagery DOI Creative Commons
Nirmawana Simarmata, Ketut Wikantika,

Trika Agnestasia Tarigan

et al.

The Egyptian Journal of Remote Sensing and Space Science, Journal Year: 2025, Volume and Issue: 28(1), P. 138 - 150

Published: March 1, 2025

Language: Английский

Citations

0

Integrated Remote Sensing and Deep Learning Models for Flash Flood Detection Based on Spatio-temporal Land Use and Cover Changes in the Mediterranean Region DOI
Yacine Hasnaoui, Salah Eddine Tachi, Hamza Bouguerra

et al.

Environmental Modeling & Assessment, Journal Year: 2025, Volume and Issue: unknown

Published: May 9, 2025

Language: Английский

Citations

0

Spatio-temporal analysis of land use and land cover changes in a wetland ecosystem of Bangladesh using a machine-learning approach DOI Creative Commons
Abu Bokkar Siddique,

Eliyas Rayhan,

Faisal Sobhan

et al.

Frontiers in Water, Journal Year: 2024, Volume and Issue: 6

Published: July 10, 2024

This study investigates quantifiable and explicable changes in Land Use Cover (LULC) within the context of a freshwater wetland, Hakaluki Haor, Bangladesh. The haor is vital RAMSAR site Ecologically Critical Area (ECA), which needs to be monitored investigate LULC change patterns for future management interventions. Leveraging Landsat satellite data, Google Earth Engine Database, CART algorithm, ArcGIS 10.8 R programming language, this analyses dynamics from 2000 2023. It focuses explicitly on seasonal transitions between rainy dry seasons, unveiling substantial transformations cumulative over period. Noteworthy include an overall reduction (~51%) Water Bodies. Concurrently, there significant increase (~353%) Settlement areas. Moreover, vegetation substantially declines (71%), while Crop demonstrates varying coverage. These identified underscore dynamic nature alterations their potential implications environmental, hydrological, agricultural aspects Haor region. outcomes aim provide valuable insights policymakers formulating appropriate land-use strategies area.

Language: Английский

Citations

3

Ecological effects of land use and land cover changes on lakes in urban environments DOI
Ganga Krishnan, Radhakrishnan Shanthi Priya, Ramalingam Senthil

et al.

Sustainable Development, Journal Year: 2024, Volume and Issue: 32(6), P. 6801 - 6818

Published: May 27, 2024

Abstract Urban lakes confront significant threats due to changes in land use and cover (LULC) resulting from urbanization subsequent climate change. This review discusses the intricate effects of urban heat island phenomenon on lakes, specifically attributed LULC changes. Utilizing Scopus Web Science databases, this study gathers most pertinent earlier research water bodies. systematically categorizes variables into five distinct groups scrutinizes drivers, parameters, tools, management strategies influencing dynamics lakes. A gap is identified understanding conjoined impacts within lake environments. The further investigates diverse ways which intersecting with multiple United Nations sustainable development goals (SDGs), notably SDGs 6, 11, 13, 15. Consequently, serves as a valuable contribution provide substantial benefits toward meeting SDGs.

Language: Английский

Citations

2